

Macroscopic Stability TSG XP status mid-run 2008

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL **PPPL** PSI Princeton U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

S.A. Sabbagh and S. Gerhardt

for the

NSTX Macroscopic Stability Topical Science Group

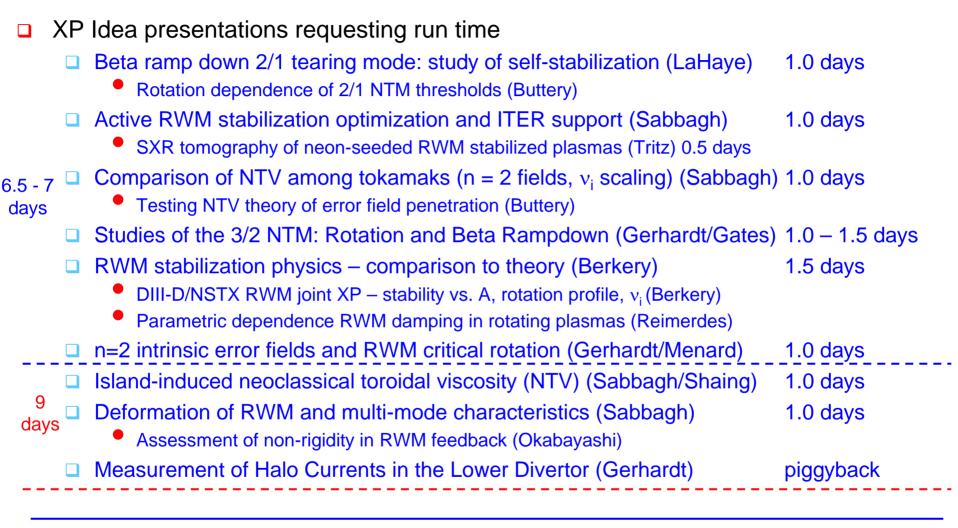
NSTX mid-run assessment

Princeton Plasma Physics Laboratory April 16th, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

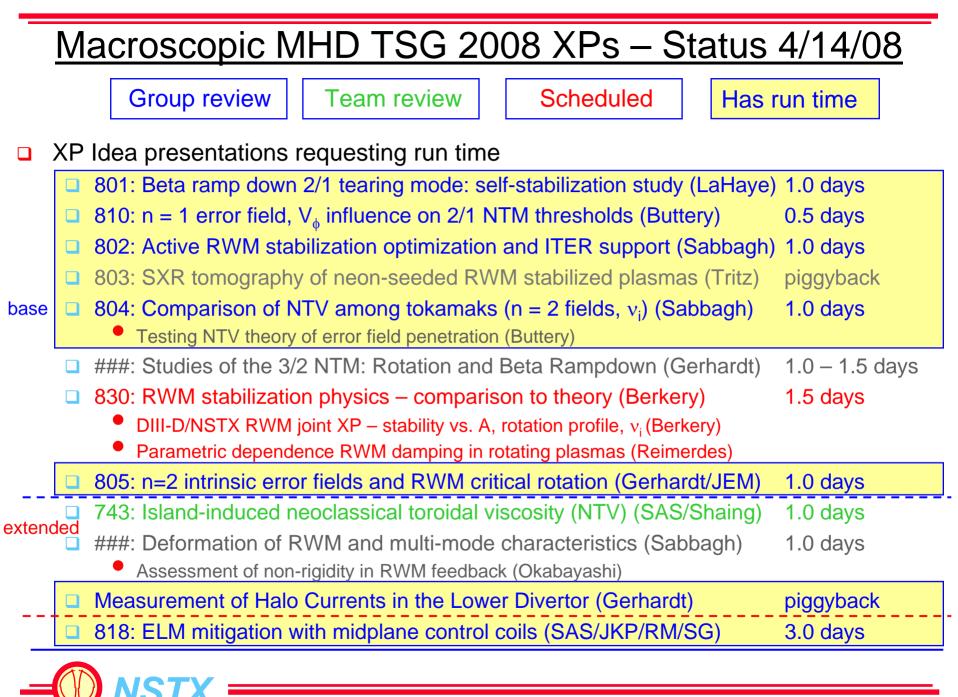
MHD XPs for 2008 guided by Milestones, ITPA needs

General mission statement (2008 Forum)


Develop physics understanding applicable to the ST development path and to tokamaks in general, leveraged by the unique low-A and high-β operational regime of NSTX

□ Priorities (summarized in two lines – 2008 Forum)

- Assess active and passive RWM stabilization physics for improved mode control (NSTX Milestone R09-1)
- Evaluate MHD sources of plasma viscosity and assess the impact of plasma rotation on plasma stability, including NTM (Joule milestone)
- XPs serve NSTX and DOE (Joule) Milestones, ITPA joint XPs, ITER support, several joint experiments / comparisons
 - 80% support Joule milestone
 - 80% support ITPA / ITER


<u>Macroscopic MHD TSG XPs – Forum 2008 Priority</u>

Run time guidance: 6.5 – 8.0 run days

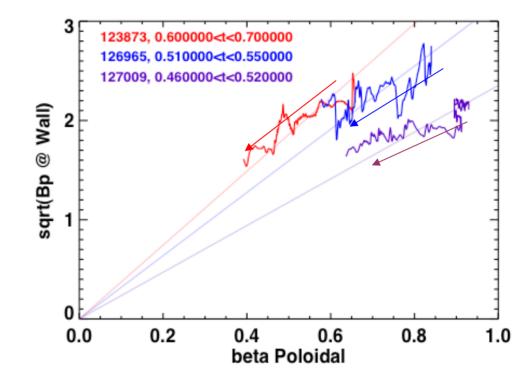
Run days: 15.5 - 16.5

XP801 examines the small island physics of 2/1 NTM

Goal / Approach

- Trigger the 2/1 mode, then step down NB power to restabilize mode.
 - This was accomplished in 1 post-lithium shot in CY2007 run
- Data to be compared with DIII-D 2/1 rampdown data.
- □ Key to i) Stay in H-mode and & ii) Avoid mode locking before restabilizing.
- □ Vary the rotation with n = 3 braking, and vary "drive" with an I_P scan.
- Status
 - This was essentially the first XP of the year, and was plagued with technical problems (NBI, ground loops,...).
 - A number of β ramp-down attempts were completed, all of which ended with a mode-lock before island was restabilized.

Plan


- Return to XP use EF correction in order to allow a lower locking threshold
 - These techniques are now being optimized in the MHD (XP 802) and ASC groups (XP 823) with improved feedback control.
- Share 1 run day with continuation of XP810 run post-lithium to reduce MHD

Data collected was useful for demonstrating the neoclassical nature of the mode

NTM should have island width proportional to β_P

 $w \propto \sqrt{\tilde{B}_P}$ $w \propto \beta_P$

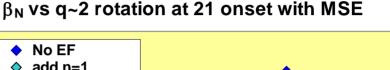
123873: Survived into β ramp-down phase, re-stabilized in CY2007 126965, 127009: Locked in CY2008

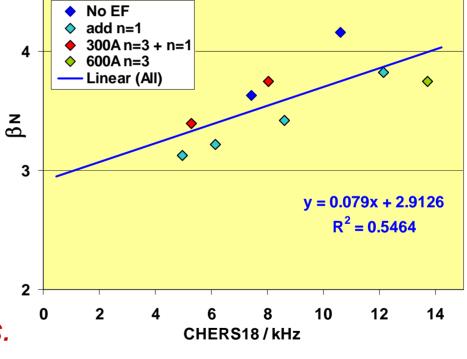
Arrows Indicate Direction of Time

XP810 Examining role of n=1 error fields at high and low rotation

Goal / Approach

- □ Trigger the 2/1 mode at high and low rotation, with and without n =1 error field
- Maintain H-mode and avoid mode-locking
- Determine if the threshold in β_N changes...important for assessing role of EF in plasmas without momentum input (read: ITER)
- Status
 - Limited data collected, lack of error field correction made interpretation difficult
 - This was essentially the second run day of the year, plagued with technical problems
 - Beta ramp-down techniques to stabilize mode implemented, mode locking problems
 - Possibly related to machine conditions and intrinsic error fields
 - □ 4 point 2/1 NTM onset scan obtained vs. n=1 field
 - Error fields act to lower rotation and decrease NTM β threshold
 - 2 point scan of n=1 field obtained with modest n=3 braking
 - Scope very limited by available time higher n=3 & n=1 levels desired to explore key question – is error field sensitivity worse at low rotation?
- Plan
 - Return and complete XP, with well-conditioned machine and n = 1 feedback capability to allow error field correction if desired


<u>XP810 Initial results – lower β_N threshold for 2/1 mode</u> with n = 1 field applied


 Preliminary onset scan obtained with n=1 fields & 2 beam recipe...

...but very limited data with n=1 applied when lowering rotation from n=3 braking...

(this was main objective)

Nevertheless, useful extension of present NSTX database to get at rotation vs. rotation shear issue...

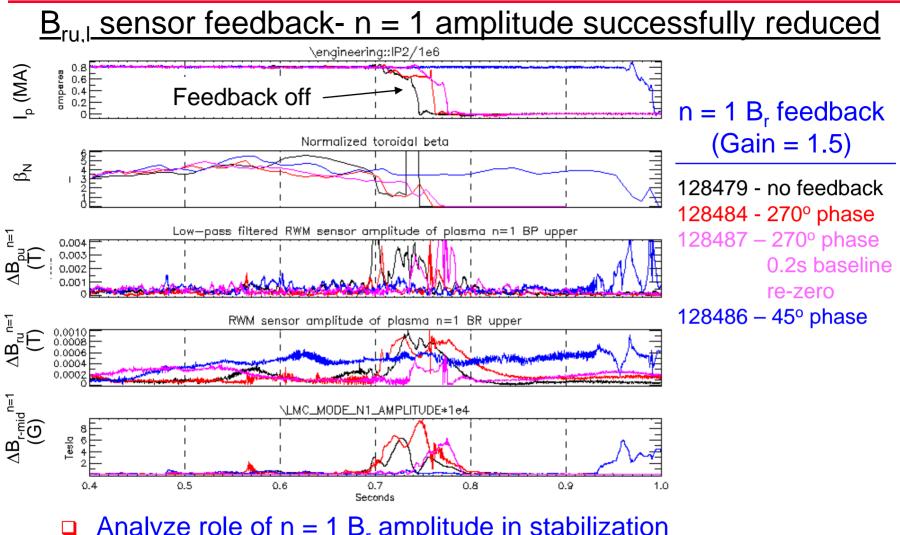
R. Buttery

XP802 RWM feedback Optimization - good initial run

Goal / Approach

- Alter active control configuration to achieve <u>highly reliable</u> RWM stabilization at various plasma rotation, ω_{ϕ}
 - Upper/lower RWM B_r, B_p sensors, follow from best CY2007 feedback settings
 - Determine if stable, low $\omega_{\phi} < \omega_{*i}$ operation exists with feedback gated off
 - If achieved, control system open as a tool for all NSTX XPs as desired

□ Specific ITER support requests (not yet run)


- Determine impact of a large toroidal gap on active RWM stabilization to simulate ITER port plug coil geometry (take out one of six control coils)
- Study effect of applied time delay on feedback

Status

- □ Rotating (~ V_{ϕ}) n = 1 mode activity stronger than post-lithium run last year
- B_{pu,I} sensor feedback successful, good statistics, relatively broad V_φ created
 Neon puff taken on one shot to better diagnose RWM (K. Tritz XP803 piggyback)
- B_{ru,I} sensor feedback showed n = 1 amplitude successfully reduced
 - Necessary but not sufficient for mode stabilization need more understanding here

Plan

Complete shot list in plasma target with reduced n = 1 rotating mode activity

- Analyze role of $n = 1 B_r$ amplitude in stabilization
 - Necessary to keep < 10G, not sufficient for RWM stability
 - Influence on n = 1 rotating mode unclear

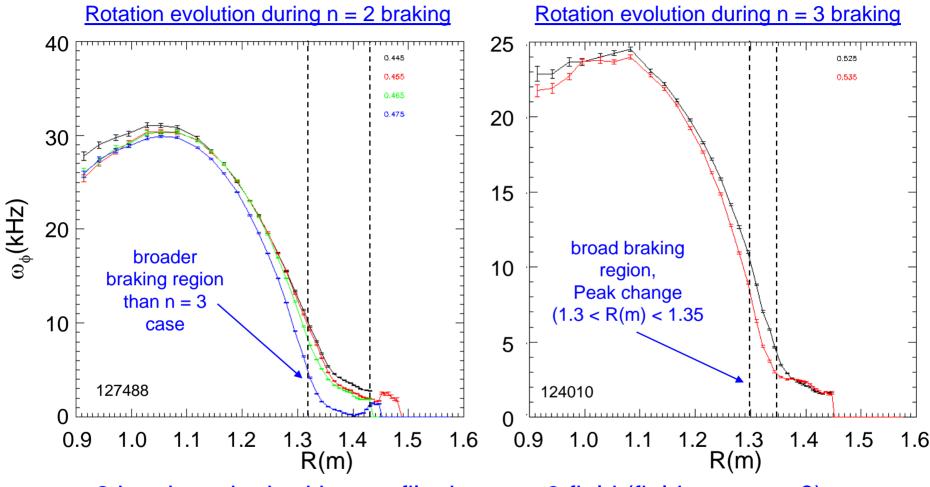
Changing B, re-zero time didn't make large difference in pulse length

<u>XP804: Comparison of neoclassical toroidal viscosity (NTV)</u> <u>among tokamaks (n = 2 fields, v_i scaling)</u>

Goals

- Compare NTV results/analysis on NSTX to other devices (MAST, JET, etc.)
- Test NTV theory for n = 2 applied field configuration
 - n = 2 may be best for comparison to other devices (n = 1 strongest resonant rotation damping, n = 3 weak in some devices, many machines run n = 2)
 - Examine possible RFA effects by varying proximity to no-wall limit
- Investigate damping over widest possible range of ion collisionality
 - Key for ITER, determine affect on rotation damping and compare to theory
- Compare to braking due to using n = 1, 3 fields

Status


- Inferior plasma conditions led to many lost shots during startup
- Regardless, good data taken for ~ 7 shots!
 - n = 2 braking clearly demonstrated, braking profile established

Plans

Complete shot list by varying collisionality – operation after lithium deposition

XP804: Clear braking observed due to n = 2 field

 \square n = 2 has broader braking profile than n = 3 field (field spectrum?)

Next step: analyze non-resonant NTV profile, examine resonant effects
 Joint XP proposed to MAST (didn't see strong n = 2 braking, while JET has)

XP805: Designed to Isolate the Presence of an n=2 Error Field

Goal / Approach

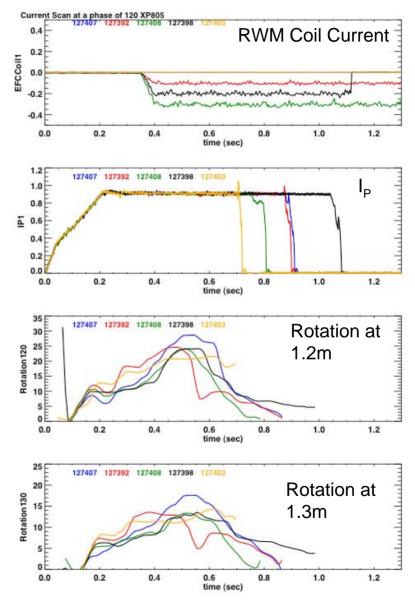
- Apply n=2 error field of varying phases and magnitude
- Look for asymmetric response in (and increase of) pulse length and plasma rotation.
- □ Mimics procedure that has found the n=3 EF in XP701, XP823

Status

- Day was plagued by irreproducible startup and early MHD.
- Two phase scans were completed:
 - 150A: No strong effect on performance
 - 300 A: Some indication of a favorable applied field phase

Plan

- Run remainder of XP in tandem with the other EF proposal (XP823) to benefit from similar discharges and methods.
- 1/2 day on schedule in last week of April



Evidence of n = 2 correcting phase found, needs confirmation

Consider Shot 127398

- Longest fiducial up to that date
- Rotation increases across the profile when field is applied
- Tolerates the rotating mode for longer

Need to confirm this trend!

XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils

Goal / Approach

- Demonstration of ELM mitigation with NSTX midplane RWM coil set
- □ Target development: (i) low q_{95} < 6; (ii) swept q_{95}
- □ Application of DC fields (broader *n* spectrum, new 2008 capabilities)
 - New combined odd/even parity field (theoretical favorite n = 2 + 3 field)
 - New even parity field (dominant n = 2) created with new RWM coil patch panel
- Application of AC fields
- Status
 - ELMs not fully mitigated; PHAT ELMs created in some cases
 - \square n = 2 + 3 configuration was not particularly favorable
 - PHAT ELMs produced in other field configurations
 - □ (aside) Good non-resonant and resonant magnetic braking detail shown
- Plans
 - Re-run most favorable cases in lower recycling conditions post-lithium run

ELMs not fully mitigated by n = 2 + 3 field; frequency decreased

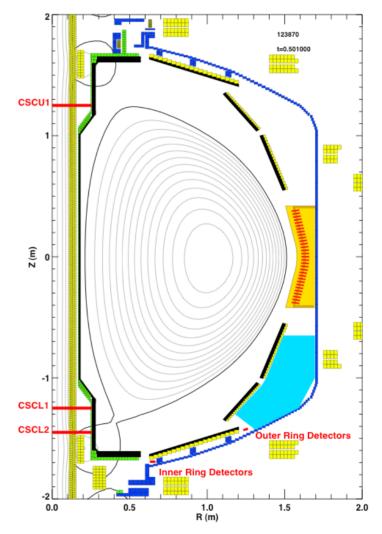
ELM target control shot (no n > 1 field,)

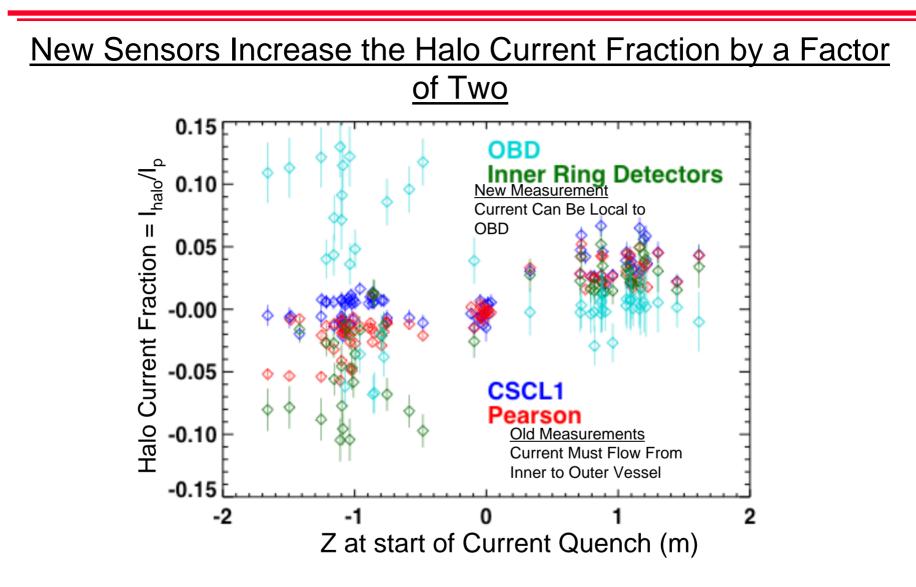
n = 2+3 field, 2.0 – 3.0kA peak RWM current

- Decrease in ELM frequency at maximum applied field
- Continue to investigate physical cause for changes in ELM behavior

Results consistent with Chirikov parameter > 1 being necessary, not sufficient condition for ELM mitigation; but could be due to different physics

Upgraded Halo Current Diagnostics Significantly Improve Measurements


Method


- Array of 12 B_T sensors
 - "Inner Ring" Inside of OBD
 - "Outer Ring" Outside of OBD
- Treat as sections of a partial rogowski coil
- Use in combination with existing measurements

Status

- Collecting data on every shot
- New Sensors Increase the HCD estimate by factor of two
 - HCF much larger when current path doesn't include the CHI buswork
- Plan: group suggests dedicated XP examine
 - halo current vs. plasma current
 - □ halo current fraction vs. diamag. flux (β)

Interpretation: HCF much larger when current path doesn't include the CHI buswork

2008 mid-run assessment - Macroscopic Stability TS Group 18

Suggestions for remainder of run – Macro Stability XPs

- Run XPs presently on schedule
 - XP830 RWM stabilization physics: April 24th
 - Key input for R09-1 milestone
 - kinetic δW analysis (J. Berkery) starting to show trends in data
 - □ XP805 n = 2 Error field reduction: April 29th (0.5 day)
- Continue XPs / re-run shots from XPs under lithium
 - Supports call by Jon for extrapolation of ST to low collisionality a significant goal of future NSTX research
- New XPs suggested by present results
 - Dedicated halo current XP (Gerhardt)
 - RWM feedback examining poloidal deformation of mode
 - Role of islands in resonant / non-resonant rotation braking (XP743)
- Estimated run time to complete XPs
 - Active XPs: 4.5 run days (+ cross-cutting XP818 ELM Mitigation run)
 - Scheduled XPs: 1.5 run days
 - Run planned / new XPs: 4 run days

