Status of RFP confinement for 2 different development paths.

Standard RFP Path:

e Steady-induction and magnetic relaxation from tearing instability
— Stochastic magnetic transport dominant
— Existing a ~ 0.5 devices:
.~1ms, f~10%, T,<1keV

J(r)-Control Path:

e Current drive for tearing stability and minimized magnetic relaxation
— Magnetic fluctuations reduced
— Improved confinement & beta:
7. ~10 ms —ten-fold increase!
p~15% —roughly doubled!
T,=1.3 keV max. —roughly tripled!
— Fast electrons confined = closed magnetic surfaces
— Ok, ~5m?/s

Tokamak-like confinement at high beta and low B(a) achieved in MST




Programmed inductive loop voltages provide current drive

targeted to edge region.

“PPCD” — Pulsed Poloidal (or Parallel) Current Drive
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Temperature profile peaks, . greatly reduced.

» Electrons are hotter with reduced Ohmic heating.
e (Gradient extends into the core.
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PPCD confinement comparable to same-current tokamak,
but with 10X smaller B(a) in the RFP.

MST

Compare . [+ 10 ms for 200 kA PPCD with tokamak t, empirical scaling:

— use “engineering” formulas with MST’s I, n, P, size & shape,

but tokamak B,£a) =1.0 T (corresponding to g ,=4).

7, =23 ms (ELMy H-mode)
=18 ms (L-mode)
=31 ms (Neo-Alcator Ohmic)

Same-current RFP:
* B ta) =0.04 T = 20X smaller
* Biia) =0.09 T = 10X smaller

Comparable t; does not imply
tokamak empirical scaling
applies to the RFP.
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100-fold increase in hard x-ray bremmstrahlung evidences

confined fast electrons during PPCD. yer
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Ryter et al., 2002

P _4(MW)/(0.061n9-62B0-6950.88)

MAST data significantly extends
range of € in ITPA database

MAST data clearly favours scaling
of the form P, ~ S, rather than
PLy~R?

1.0 - - Enhanced threshold power in
MAST would imply P, ~ €93
if not due to other factors
(e.g. differences in divertor
geometry)

= ASD = CMO
= D3D & JFT

a MAS = TCV
= AUG < COM

€ = JET =+ JT6
ITER v PBX

0.0 0.2 0.4 0.6 0.8
Inverse aspect ratio, €

Detailed analysis requires a regression on the KR
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By ~3, H, ~ 1, n/ng, ~ 0.5 sustained
for ~200ms (~ 4t;)
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Internal Transport Barriers
Strong indications of ITBs in MAST
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Early NBI (~2MW) to inhibit current penetration I weak central shear (EFIT)

Modest density (n, ~ 1 - 3 x 10'°m-3) for good beam penetration and
high momentum input per particle to maximise flow shear KR
*
UKAEA Fusion *
Working W *

with Europe ¥ * *




SIMULATIONS AND FLUCTUATION DIAGNOSTICS ALLOW FOR
QUANTITATIVE COMPARISONS OF TURBULENCE CHARACTERISTICS

Simulation Codes

Diagnostics
GRYFFIN-Flux-tube
gyrofluid
Correlation
UCAN-3D Qlopal Reflectometer
Gyrokinetic,
Particle-In-Cell, Le Sk

gleclioslatie - High sensitivity

GYRO-3D Global,

Gyrokinetic 5 s
Eulerian, eam Emission
electromagnetic, Spectroscopy
shaped plasmas, ~
rotation -n/n
B I-c,r’ Lc,q’ e
BOUT-3D BraginskKi - 2D, flows

simulation

[picture from GYRO,
(edge/SOL) courtesy J. Candy]

Dill-D
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SIMULATION AND MEASURED WAVENUMBER SPECTRA COMPARE WELL

Local density fluctuation poloidal wavenumber spectrum (from BES) from a
DIlI-D discharge is compared to GRYFFIN calculation (r/a = 0.7)

COverIayed BES & GRYFFIN S(kq) Spectra)
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Ko Py
 Spectral shape, peak wavenumber and width agree

- Calculated flux and amplitude (n/n) agree within a factor of 2

- GRYFFIN does not include profile effects
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RADIAL CORRELATION LENGTHS FROM BES AND
CORRELATION REFLECTOMETER COMPARE WELL WITH SIMULATIONS

2 Tesla M Reflectometer
® BES
m GYRO
® GRYFFIN  Reflectometer and BES
40 5-107 data close given different
35 ¢ 1 Tesla A BES radial positions
| A GYRO - follow 5-10 r ¢ scaling
e 3.0 : A GRYFFIN S
=25 . GYRO & GRYFFIN
5, 2.0 - predictions for Land 2 T
515 are consistent with r *
— 0 ﬁ scaling of Dr
1.0
« Magnitude of GYRO within
0.5 ¢ uncertainty of measurements
0.0 S P B T

0.4 0.5 0.6 0.7 0.8 0.9 1
normalized radius r

« Quantitative agreement within uncertainties crucial to validation

NATIONAL FUSION FACILITY
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SELF-REGULATING ZONAL FLOWS THOUGHT
CRUCIAL TO MEDIATING FULLY SATURATED STATE

« Predicted theoretically to regulate turbulence through time-varying ExxB+ flows
- observed in simulations

« Axisymmetric (n=0, m=0), radially-localized electrostatic potential structures.
Zonal flows have two dominant branches:

- Low-frequency residual (Rosenbluth-Hinton) mode (f < 10 kHz)
- Higher-frequency Geodesic Acoustic Mode (10-200 kHz)

—PEr

Suggests looking directly at the

') \ 4 bl time-dependent turbulence flow field
Turbulence to discern experimental evidence for
(ExBT)
Elows zonal flows.
U

(poloidal cross-section) Direct measurement of

. Time-delay estimation (TDE) analysis =g of Turbulence Flow Field:
applied to turbulence imaging with BES Vg(r ,Z 1)
Dii-

NATIONAL FUSION FACILITY
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COHERENT vq FEA

TURE OBSERVED.

EXHIBITS POLOIDALLY EXTENDED, RADIALLY LOCALIZED STRUCTURE

V, Spectra (a.u.)

Semi-coherent feature near 15 kHz on broadband weak velocity turbulence
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Poloidally extended structure (low-m)

Radially narrow (~Dr,))

Amplitude sufficient to affect
turbulence: wg < 1/t

(Not associated with MHD)

40

Poloidal

« Mode frequency increases
with edge Te:

- suggests oscillation is a

Geodesic Acoustic Mode:
f = cg/2pR=12 kHz

Radial
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loN NB DRIFT DIRECTION STRONGLY AFFECTS L-MODE TO H-MODE
POWER THRESHOLD: TURBULENCE SHEAR VARIES DRAMATICALLY

lon NB towards lon NB away from .
. o vV, Profile compared
dominant X-point: dominant X-point: a P
(|0W6r Slngle nU”): (upper Sing|e nu”) with ErXBT
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' « Measured turbulence poloidal flow
P 4(LSN) ~ 1/3 * P, ,(USN) exhibits sharp flow reversal in LSN

_ * Wg > 1/t : Natural shear may
* Most edge profiles are facilitate LH transition

similar (ng, T, T) DIII-D
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