Solenoidless Start-up Scenarios for NSTX

Y. Takase, Univ. Tokyo

in collaboration with J. Menard, D. Gates

NSTX Physics Meetings

24 March 2003

ST reactors require CS-less operation

CS-less operation is a requirement for ST reactors

ARIES-ST (1 GWe) R = 3.2 mR/a = 1.6 $I_p = 31 \text{ MA}$ $\dot{B}_{T} = 2.1 T$ $\beta_{T} = 54\%$ $f_{BS} = 99\%$ $P_{fusion} = 2.9 \text{ GW}$ Neutron wall load $= 4.1 \text{ MW/m}^2$ **Recirculating power** fraction = 0.32

Components

Replaceable Components

Examples of CS-less tokamak reactors

Improved economic competitiveness may be realized by a CS-less design.

S. Nishio, et al., paper FT/P1-21, 19th Fusion Energy Conference, Lyon 2002.

CS-less I_p ramp-up scenarios investigated

- ECH pressure driven currents (Forest scenario)
 - Only low current, low density plasmas produced so far
 CDX-U, DIII-D, TST-2
 - Challenge to combine with other CS-less scenarios
 - EBW, HHFW, bootstrap-overdrive
 - PF induction + RF (EC/HHFW)
 - B_v swing from + to (JT-60 scenario)
 - Is field null required? → scenarios with/without field null
 - Initially no force balance
 - Requires strong plasma source

Merging/compression (MAST/TS-3 scenario)

Demonstration of merging/compression start-up by external coils

Plasma current generation by ECH in TST-2

Believed to be pressure driven currents (Forest scenario)

♦ ECH (2.45 GHz)Å
→ 1 kA / 1 kW
♦ Low gas pressures
→ low collisionality

Vertical field with
 positive curvature
 \rightarrow trapped electrons

Configuration Evolution During CS-less I_p Start-up

I_p ramp-up accomplished by EC/LH preionization and VT/VR coil ramps
 Transition to divertor configuration (5) and further I_p ramp-up by LHCD

Scenario development for NSTX

Analysis by Menard's LRDIAG

- Circuit equation solver
 - NSTX coils and conducting structures
 - Eddy currents taken into account
 - Very well benchmarked
 but does not coloulate plasma couilibrium

but does not calculate plasma equilibrium

- Various distribution of "plasma" coils
- Each coil can have different resistivity
- but constant in time

Plasma model selected to reproduce I_p ramp-up of a 1MA NSTX plasma

Pressure-driven I_p start-up (Forest scenario) with various field curvatures

Start-up scenario with outboard X-point

Start-up scenario with outboard X-point (full cross section plasma)

Merging/compression (MAST scenario) Start-up from PF1A-PF5 nulls

Conclusions

- ECH pressure driven current start-up is straightforward
 - Configurations with different field curvatures can be tested on NSTX
 - Several kA of plasma current expected with 20 kW ECH

Several promising PF induction scenarios identified

- Optimistic (but reasonable) scenarios predict over 500 kA of plasma current
- Even pessimistic scenarios predict at least 100 kA
- Can be further ramped up by NB/RF heating and/or CD
- Merging/compression scenario identified
 - Dynamic evolution of plasma current more difficult to model
 - Field null by PF1A + PF5, plus induction by PF2 + PF3 + PF5
 - Expect over 100 kA