A near term application of lithium walls to NSTX

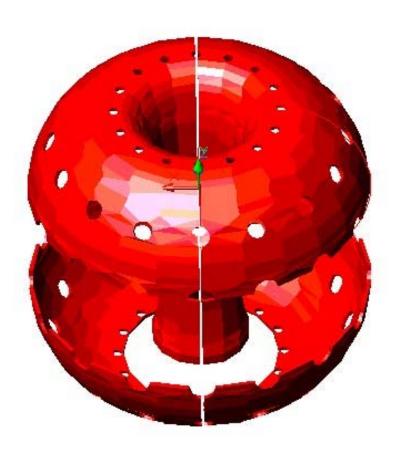
R. Majeski, R. Kaita, R. Maingi, H. Kugel

Outline

- Introduction
 - The LTX approach to a nonrecycling wall
- NSTX implementation
 - Power handling limits
 - Particle pumping capability
- ◆ Test in CDX-U
- Summary

Introduction

- A flowing liquid lithium divertor target for NSTX is being considered
 - Present schedule calls for installation no earlier than 2008
- ◆ Lowered recycling *in the near-term* is desirable for NSTX
 - Cryopump
- However, a simple concept for implementing molten lithium walls has been developed for the LTX proposal
 - NOT A FLOWING LITHIUM SYSTEM
 - REQUIRED IN-VESSEL INVENTORY IS VERY SMALL
 - Plasma may transport lithium coatings onto windows
 - » Similar to carbon transport
 - But: no flow of bulk lithium required
- lacktriangle We can use the LTX wall concept to reduce recycling and Z_{eff} in NSTX



Reminder: What is LTX?

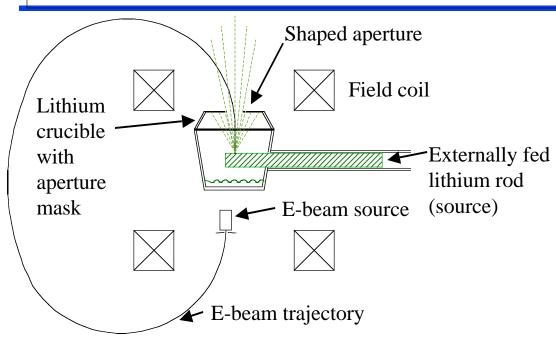
- ◆ Goal: an ST with <10% global recycling
- ◆ Approach: modify CDX-U to accomplish the LTX objectives
 - R=40 cm, a=26 cm, κ =1.55, B_T=4 kG, I_p <400 kA (50 msec flattop)
- Install a low recycling wall
 - Capacity for full discharge duration plasma particle inventory
 - Renewed every discharge
- Employ lithium wall technology: thin films
 - Recoated between discharges
 - Plasma-aligned, heated wall (W or Mo sprayed copper shell)
 - Poloidal field, control system upgraded

Conformal molybdenum- or tungsten-sprayed cast chrome copper shell will form wall in LTX

- LTX shell would be 1 cm thick chrome copper, heated to 200 -250C.
 - Plasma-facing side would be flamesprayed moly or tungsten (6-7 mils)
 - Heating in LTX would use resistive elements
 - No shell cooling
- Construction is similar to the NSTX stabilizing plates

In LTX an e-beam system would deposit lithium on the tungsten (moly) coated copper wall *before every discharge*

Lithium-coated, heated, plasma-aligned first wall E-beam sources

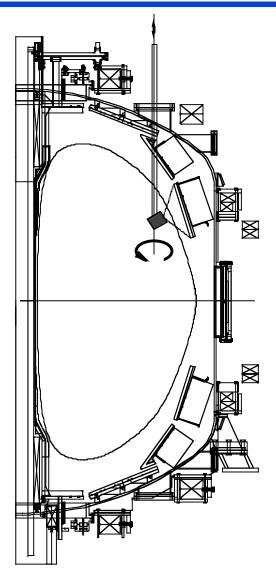

- Electron-beam deposition
 - 100 1000 Å coating applied between discharges
 - Deposition rates of 1000 Å /40
 sec. at 1 m radius demonstrated
 - » NSTX relevant approach
 - Self contained, insertable version also under development
 - » NSTX relevant approach
 - Wall temperature of ~ 200 °C -250 °C will keep lithium coating molten
 - Heat-conducting copper shell will reduce local temperature excursions
 - Limit evaporation

Solid lithium evaporation source

Recirculating lithium limiter- Plasma Technology (used also as evaporation source)

Self-contained deposition source is under development

- Electromagnetic version of commercial (permanent magnet) source now in use
 - Allows adjustment of power density by varying ratio of coil currents
- ◆ Beam power densities of 250 MW/m² attainable
- Shroud crucible or physically scan source to produce desired deposition pattern
 - Defocussed beam can heat/clean aperture
- **♦** Adaptable to NSTX (or even ITER)

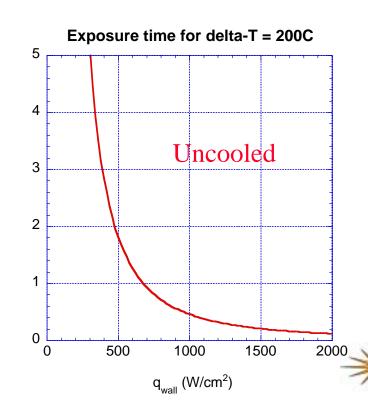


Graded approach to low recycling in NSTX

- First step: lithium pellet injection
 - Utilize lithium-carbon chemistry to reduce recycling
- Second step: heavier lithium coating of the carbon tiles
 - Utilize an LTX-like e-beam coater
- ◆ Third step: Install a *single* new passive plate
 - Flame sprayed moly over chrome copper
 - Apply lithium coatings between shots
- Finally:
 - Expand lithium coated passive plate system
 - Liquid lithium jet divertor (ALIST system)
- Important caveat for first two steps:
 - Edge of NSTX is NOT as hot as TFTR.
 - Sheath potential is much lower.
 - Ion implantation range is shallower.
 - » It is possible that lithium pellets and even the coating will not have as dramatic an effect on recycling as in TFTR

NSTX implementation

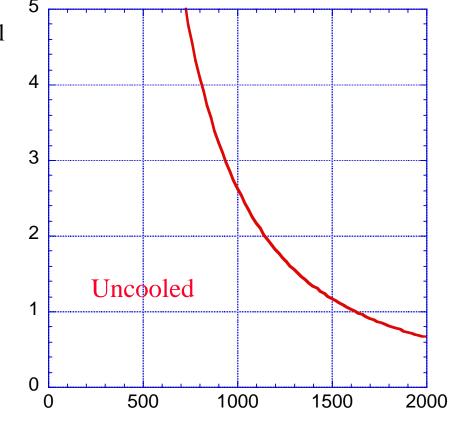
- Replace one of the passive stabilizing plates with a new plate, faced with plasma sprayed tungsten or moly
- Install an insertable e-beam system which can be scanned over the stabilizing plate
- Deposit 1000Å of lithium and withdraw the e-beam system
 - Similar to the insertable getters used in PLT,
 PBX
 - But time scale is different
 - » Few 10's of seconds for 1000Å coating
 - » Cycle time is dominated by insertion/removal of e-beam.
- Coat before every shot
 - 1000 shots \Rightarrow 0.1 mm accumulation
 - » Accumulation may be limited by evaporation


Power limits: stabilizing plates

- Replacement stabilizing plates: chrome-copper oversprayed with Mo or W, coated with lithium
 - 1000 applications of 1000Å lithium coating: 0.1 mm lithium
 - Underlayment of moly or tungsten: 0.15 mm
 - Neglect temperature differential across the coating+facing
- Temperature rise:

$$\Delta T = 2q_{wall}(W/cm^2) \sqrt{\frac{t}{\pi \kappa \rho_m C_p}}$$

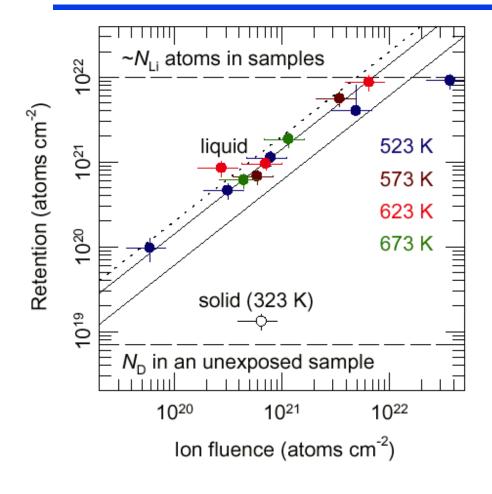
- Or time-to-temperature: $t = 11.4 \left(\frac{\Delta T}{q_{wall}} \right)^2$ For the wall:
 - T_{wall} (initial) ~ 200C
 - T_{wall} (final) < 400C
- Uncooled rise
 - Use of active cooling will extend limits

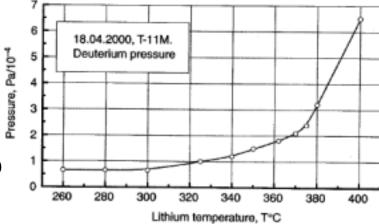


Power limits: divertor target plates

- Previously had not considered this technique for the divertor
- But: coated plate is viable in the divertor if initial condition is solid lithium

time (sec)


- $T_{\text{wall}}(\text{initial}) \sim 20C$
- $T_{wall}(final) \sim 500C$
 - » Higher temp. limit than wall
 - » Much larger ΔT
- Uncooled rise
- Sweeping the strike point would enable long discharges
- Present discharges do not require sweeping


 q_{div} (W/cm²)

Exposure time for delta-T = 480C

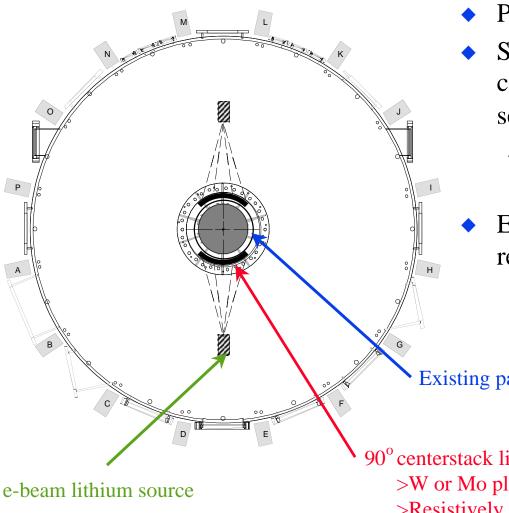
High capacity of liquid lithium to store deuterium demonstrated in PISCES-B experiments

- Liquid lithium retains atomic deuterium up to a nearly 1:1 Li:D ratio
 - Deuterium is dissolved in the lithium; does not form a stable deuteride
 - High diffusivity precludes large surface concentration
- Coating <u>will not saturate</u> in a discharge
- "Bound" hydrogen can be liberated by heating
 - Hydrogen (tritium!) retention may not be a problem

Results from T11-M (PP&CF **44**, 955) showing deuterium desorption vs. capillary lithium limiter temperature

Particle pumping by the lithium coating

• Wall:


- Area of wall plates is $\sim 1.5 \times 10^5 \text{ cm}^2$.
- Volume of 1000Å coating: 1.5 cm³ (~ 6 x 10²² atoms)
- $\sim 6 \times 10^{20}$ particles in an NSTX discharge
- Wall has the capacity to pump the discharge for many particle confinement times

Divertor:

- Area $\sim 3.6 \times 10^4 \text{ cm}^2$.
- -1.5×10^{22} atoms.
- Less capacity.
 - » Requires strike point sweeping for partial divertor pumping.
- Lithium jet system has an advantage in the divertor.

Coated wall will undergo test in CDX-U

- Proposed concept test for FY04
- Sources will be vertically scanned to coat $\sim 22 \times 75$ cm (W × H) limiter segments between shots
 - Parked near top of vessel during discharges
- Existing tray limiter will be removed under present plans

Existing passive heat shield

90° centerstack limiter segment

>W or Mo plated copper

>Resistively heated

Summary

- Lithium coated walls are envisioned for LTX to eliminate recycling
 - Rapid, controlled e-beam application of a 1000Å lithium coating
 - Wall maintained at 200-250C
 - » Deuterium will dissolve in molten lithium
- Coated wall technology is applicable to NSTX
 - Power, particle handling is adequate for wall
 - Can be applied to divertor if strike point is swept
- Lithium coating is low Z
- Lithium coating will pump ALL the water
- Lithium coating will pump the edge plasma
 - Wall coating will be adequate to provide a pumping wall
 - Coating will provide some atomic hydrogen, ion pumping in the divertor
- Impact on other systems should be minimal

