

ERD Observations in RF Heated Helium Plasmas

T. M. Biewer, R.E. Bell October 20th, 2003 NSTX Physics Meeting Princeton Plasma Physics Laboratory

T.M. Biewer, Oct. 20th, 2003

- The Edge Rotation Diagnostic
- Ohmic, Helium Plasma
 - He (majority ion) and C (impurity ion) dynamics
 - Calculation of E_r from force balance
- RF Heated Helium plasma
 - Cold component comparison to Ohmic plasma
 - RF antenna is a BIG source of C at the edge
 - Hot component dynamics and implications
- Summary

The Edge Rotation Diagnostic

- Phil Ryan, et. al RF heating XP
- RF system shut down resulting in an Ohmic, He plasma
 - $I_p \sim 500 \text{ kA},$ $n_e \sim 1.2 \times 10^{19} \text{ m}^{-3},$ $T_e \sim 800 \text{ eV},$ $B_T \sim 0.44 \text{ T}$

T.M. Biewer, Oct. 20th, 2003

Modified Abel Inversion

- Poloidal radii from sightlines w/ EFIT due to strong plasma shaping
- He II peaks further in than C III consistent with its higher ionization potential (54.4 eV compared to 47.9 eV)
- Approximately equal Emissivities suggests that emission is essentially isotropic on the flux surface (during Ohmic He plasmas).

T.M. Biewer, Oct. 20th, 2003

He II dynamics

C III dynamics

E_r profile from He II and C III

E_r=vxB- ∇ p/Zn Good agreement between the E_r found from He II and that from C III Shape around LCFS similar to simulations for ASDEX-U. Kiviniemi *PoP* **10** 2604 (2003)

Other structure from TM islands? Probably not; no MHD activity.

T.M. Biewer, Oct. 20th, 2003

Application of RF power

- Two shots from the same day of Phil Ryan's RF heating XP
- Shot <u>110144 v. 110153</u>
- I_p 500 kA, 500 kA
- $B_T 0.41 T$, 0.44 T
- P_{RF} 4.3 MW, 0
- T_e 1.7 keV, 0.8 keV
- $n_e = 2.0 \times 10^{19}$, 1.2×10^{19}

T.M. Biewer, Oct. 20th, 2003

Two successive time frames clearly show the spectral consequences of 30 MHz HHFW heating (4.3 MW input) on the edge plasma.

Data is best fit with 2 Gaussian distribution function (hot and cold components).

HHFW RF Power heats edge ions

ODNSTX

Time evolution of NSTX Shot 110144 shows that edge ion heating is well correlated with the application of 30 MHz HHFW power to the plasma. He II

He II cold component

He II dynamics

RF antenna sources C?

- E_{He} for cold comp. of RF plasma $\approx E_{\text{He}}$ of Ohmic
- E_{He} for c.c. is balanced (tor~pol), as for E_{He} of Ohmic
- $E_{\rm C}$ of cold comp. of RF plasma >> $E_{\rm C}$ of Ohmic
- Tor. $E_{\rm C} >> {\rm Pol.} E_{\rm C}$ for c.c. of RF plasma
- Collisions with edge C neutrals responsible for ion loss?

T.M. Biewer, Oct. 20th, 2003

• What about the Hot component?

Hot component of 110144

- Hot component has an unequal distribution for both He and C, i. e. $E_{pol} >> E_{tor}$
- E_{pol} : He h.c. >> c.c. ~ Ohmic, C h.c. ~ c.c. >> Ohmic
- E_{tor} : He h.c. ~ c.c. ~ Ohmic, C h.c. ~ c.c. > Ohmic

A plasma dissected by Charge Exchange

From NSTX Shot 110133 to 110145 the applied RF power was increased. Empirically, T_i increases as $P_{RF}^{0.47}$.

- Applying power to the RF antenna coincides with large amounts of Carbon in NSTX
 - Antenna direct source?
 - Effect greater near antenna (poloidal view).
 - Surface waves scouring the walls?
 - Or why do we see anything in the toroidal view?
- This Carbon is useful as a Charge Exchange Diagnostic
 - There are hot ions in the edge.
 - Parametric decay of HHFW on He²⁺ majority as heating mech.
 - How does Carbon get hot? Collisions?
- Does running the antenna clean itself up?
- Need experiments with CHERS and antenna camera.
- Need modeling of edge plasma (CRM, MIST?).

Er from He II and CIII hot

T.M. Biewer, Oct. 20th, 2003