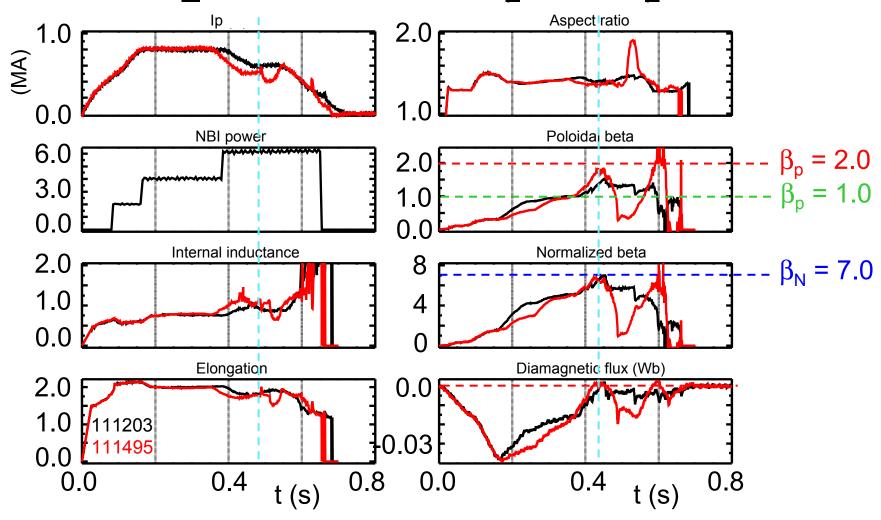
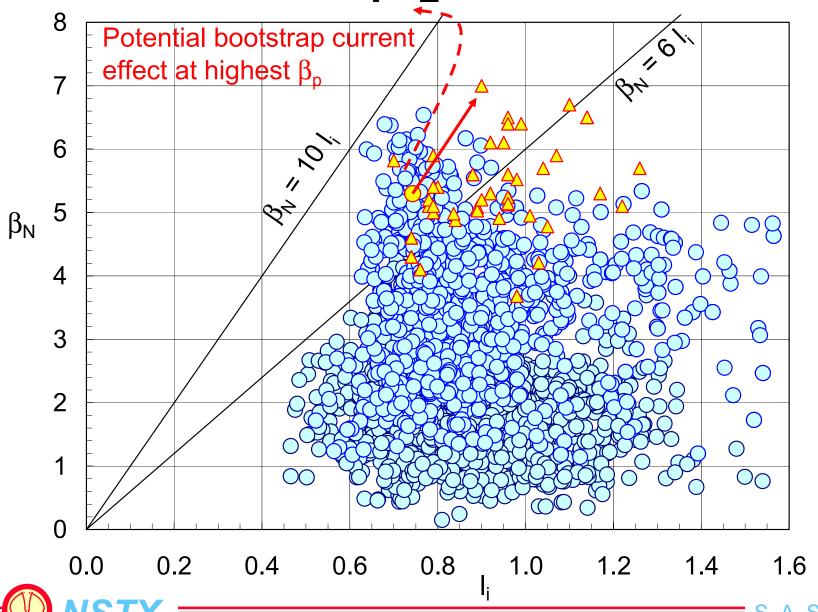
XP414: Rotation and Aspect Ratio Effects near the High β_p Equilibrium Limit – Results 2/25/04

Goals


- $lue{}$ Examine aspect ratio dependence of rotation effects at high eta_p
- Produce maximum β_{D} and β_{N} in NSTX
 - Approach (reach?) the equilibrium limit ($\beta_p \sim 2.5$ based on 110184)
 - Examine bootstrap current
 - potential for hysteresis in (I_i, β_N) space toward conceptual design target
 - Reach β_N = 8 (conceptual design milestone)
 - \square potential for β_N = 10 in best case scenario
 - Test equilibrium reconstruction in diamagnetic plasma, maximum β_p
- Determine global stability / confinement in new equilibrium regime

More progress toward equilibrium limit at high rotation

- \blacksquare High β_{D} target conditions established
 - \blacksquare High rotation targets, $f_{\phi} \sim 30$ kHz in plasma core
- \square High β_{D} and β_{N} reached
 - \Box I_p = 0.8 -> 0.6 MA, current profile modified to I_i ~ 1.2
 - \square plasma β_p = 1.8, several shots $\beta_N \sim 6.5$, $W_{tot} \sim 180$ kJ
 - Plasma slightly diamagnetic (2 mWb)
 - Partial kinetic EFIT run; key rotation analysis pending CHERS
- \square Recent shots show smaller, external reconnections limit β
 - □ Neutron collapse in β_N = 7 plasma indicates internal/global mode
 - Recently beta collapses need not correlate with neutron collapses
 - CHERS: carbon accumulation near edge, spreads inward
 - perhaps due to edge island; rapid rotation slow down
- \square Difficulty with $I_D = 1.0 => 0.6$ MA waveform
 - Used ~ 10 shots for development, but returned to $I_p = 0.8 = > 0.5$ MA


High β_N plasma reaches β_p = 1.8; β_p = 2 late

- \Box Highest β_p plasma is slightly diamagnetic (2 mWb)
- Recent shots closer to equilibrium limit ~ 2.5

Operating space (I_i, β_N) has been expanded

