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NSTX

Physics Models Are Being Applied to Understand 
Rotation Damping in NSTX Plasmas

Motivation
Rotation damping impedes achievement of high 
plasma beta
Comparison of theory and experiment can give critical 
understanding of rotation damping

Outline
Survey of rotation damping observed
Theoretical models of rotation damping
Quantitative comparison of theory to experiment



NSTX

Large MHD Instabilities can Decrease 
Plasma Rotation Globally

1/1 island causes fast 
global damping

Momentum transfer 
across q=1

Rotation flattens 
then damps slowly

Large or multiple 
islands a candidate
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NSTX

Small Islands or ELMs Cause Localized 
Rotation Damping

Rotation damping is diffusive from 
rational surface

ELM rotation damping is ~8 
times slower than for global 
mode; rotation recovers
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NSTX

Rotation Evolution Equation used for 
Experimental Comparison

Resonant EM force on island (R. Fitzpatrick, et al.)

Couple of island with static error field and NSTX conducting wall

Neo-classical toroidal viscosity (NTV) theory 

K.C. Shaing et al.

Plasma inertia and fluid viscosity included in analysis 
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Other Torques Included in Analysis

JxB torque within 
inner region

Fluid viscous 
coupling between 
inner and outer 
region

1/1 mode inner 
region extends 
across core

NTV torque 
Doppler shifted 
relative to q = 1 
surface
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JxB Torque Balanced by Viscosity and Inertia 
Matches Local Island Rotation Damping

Discharge with small 2/1 
Island

Take Facshielding = 1

Mode grows as it slows in 
time
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Non-resonant NTV Theory Used to Analyze 
Global Rotation Damping

Take parabolic form of

Assume

away from rational surfaces

Presently working to include ideal MHD

eigenfunction for δB
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Non-resonant NTV Physics Model Matches the 
Measured Global Damping Profile during RWM

Torque Balance

Neoclassical 
viscous torque in  
good agreement 
with observed 
global damping

Island at edge not 
modeled in 
calculation
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Quantitative Agreement within a Factor of 3 
over Many Shots

12 shots

175 points
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NTV Theory Can Be Applied to 1/1 Mode 
Induced Rotation Damping

Parabolic

80 G at plasma 
core1,2

0 G at q=1 surface
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Quantitative Agreement between Rotation Damping 
Theory for Large 1/1 Mode and Measurement

Blue: Calculated torque density

Red: Measured rotation damping profile
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NSTX

Quantitative Agreement between Rotation Damping 
Theory for Large 1/1 Mode and Measurement

Blue: Calculated torque density

Red: Measured rotation damping profile
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Electromagnetic Torque Alone Too Small to 
Quantitatively Explain Global Damping

Assume only EM 
torque in plasma 
core

Constant δbr within 
q=1 surface

Include static error 
field and conducting 
wall drags

Assume 
Facshielding=1

Conservative 
assumption

Required δbr for 
best fit is ~2300 G
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Edge Rotation Damping by ELM is Insignificant

No other modes (NTM, 
RWM, etc.) during ELM

Edge rotation decreases while 
plasma in the core speeds up

Rotation affected width same as neaffected width
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Repetitive ELMs Can Clamp Edge Rotation

Rotation recovers after each 
ELM

ELMs do not prevent plasma 
core from speeding up
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Quantitative Agreement between NTV 
Theory and ELM Rotation Damping

Assume  

Assume the field perturbation 
decays fast into the plasma 
with
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Rotation Damping Explained by Resonant and 
Non-resonant Physics Mechanisms 

Resonant mode interaction with NSTX static error field and 
conducting wall balanced by viscosity and inertia in 
reasonable quantitative agreement with local rotation 
evolution near rational surface

Non-resonant NTV model estimate in good quantitative 
agreement with measured global damping in RWM and 
1/1 mode plasmas, as well as local damping in ELMing
plasma

Electromagnetic drag alone is too weak to cause fast 
global damping

Future analysis will continue to improve physics model 
More CHERS data is needed


