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Physics Models Are Being Applied to Understand
Rotation Damping in NSTX Plasmas

JIMotivation

Rotation damping impedes achievement of high
plasma beta

Comparison of theory and experiment can give critical
understanding of rotation damping

JOutline

Survey of rotation damping observed
Theoretical models of rotation damping
Quantitative comparison of theory to experiment




Large MHD Instabilities can Decrease

Plasma Rotation Globally
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J 1/1 island causes fast
global damping

J Momentum transfer
across g=1
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] Rotation flattens
then damps slowly

] Large or multiple
islands a candidate
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Small Islands or ELMs Cause Localized
Rotation Damplng
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J Rotation damping is diffusive from U ELM rotation damping is ~8
rational surface times slower than for global

mode; rotation recovers




Rotation Evolution Equation used for
Experimental Comparison
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J Resonant EM force on island (R. Fitzpatrick, et al.)

Couple of island with static error field and NSTX conducting wall
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1 Neo-classical toroidal viscosity (NTV) theory
K.C. Shaing et al. ur;r(nown

Lyry o< brz\/f

. Plasma inertia and fluid viscosity included in analysis



Other Torques Included in Analysis

1 JxB torque within
Inner region

JFluid viscous
coupling between
inner and outer
region

J1/1 ‘mode inner
region extends
across core
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JXB Torque Balanced by Viscosity and Inertia

Matches Local Island Rotation Damping
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Non-resonant NTV Theory Used to Analyze

Global Rotation Damping
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Non-resonant NTV Physics Model Matches the

Measured Global Damping Profile during RWM
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1 Neoclassical
viscous torque in
good agreement
with observed
global damping

] Island at edge not
modeled in
calculation



Quantitative Agreement within a Factor of 3
over Many Shots
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NTV Theory Can Be Applied to 1/1 Mode

Induced Rotation Damping
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Quantitative Agreement between Rotation Damping
Theory for Large 1/1 Mode and Measurement
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] Blue: Calculated torque density

] Red: Measured rotation damping profile



Quantitative Agreement between Rotation Damping
Theory for Large 1/1 Mode and Measurement
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Electromagnetic Torque Alone Too Small to

Quantitatively Explain Global Damping

N

JAssume only EM
torque in plasma
core

112600
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JConstant 8b, within
g=1 surface

JInclude static error
field and conducting
wall drags
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Edge Rotation Damping by ELM is Insignificant
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Repetitive ELMs Can Clamp Edge Rotation

200

—t=0415
—t=0.425|_|
—=1=0.435
—t=0.445
t=0.455—
—1=0.465
t=0475
—t=0485| |
t=0.495

—t=0505
40 —t=0515] |

e 0.8 _1.0° 1.2 14 > 1.6
0.46 0.5 0.54 e R (m) X
time (s) 10

——1=0425
——1=0.435
—1=0445
t=0.455| |
——1=0.465
t=0.475
——1=0.485
t=0.495

JRotation recovers after each
ELM

e t=0.505]
—t=0.515

JELMs do not prevent plasma
core from speeding up

1.1 1.2 3 1.4 1.5




Quantitative Agreement between NTV

Theory and ELM Rotation Damplng

0.6
112581
t=0.715-0.725 s
0.4
- /ﬂ \ <
‘?E 0.2
2 J
00 ——o aQ
/\/ _IOR a damping
-0.2 t 7
112581 .
t=0.725-0.735 s \ :
N§ 0.2 ‘/o 0.71
0.0
040 12 14 16

R (m)

e N

0. 72 0. 73 0.74
time (s)

J Assume 6B/B, [ or, Ja~10%

. Assume the field perturbation
decays fast into the plasma
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Rotation Damping Explained by Resonant and
Non-resonant Physics Mechanisms

JResonant mode interaction with NSTX static error field and
conducting wall balanced by viscosity and inertia in
reasonable quantitative agreement with local rotation
evolution near rational surface

I Non-resonant NTV model estimate in good quantitative
agreement with measured global damping in RWM and
1/1 mode plasmas, as well as local damping in ELMing
plasma

L Electromagnetic drag alone is too weak to cause fast
global damping

. Future analysis will continue to improve physics model

More CHERS data is needed



