Blob birth and transport in NSTX: GPI data analysis and theory

J.R. Myra, D.A. D'Ippolito, D.A. Russell Lodestar,
D.P. Stotler, S.J. Zweben, PPPL,
R. Maqueda, Nova Photonics, J. Boedo, UCSD,

T. Munsat, U. Colorado, and the NSTX Team

acknowledgements: B. LeBlanc (TS), S. Sabbagh (EFIT)

presented at PPPL, Sep. 26, 2005

work supported by DOE grants DE-FG03-02ER54678 and DE-FG02-97ER54392

Background & Motivation

- programmatic: ITER
 - **pedestal/edge parameters** critical for performance, $Q \Rightarrow$ understand edge T&T
 - **power handling**: PFC damage by impact from blobs, ELMs, short-circuit divertor?
 - wall content (tritium inventory)
 - **SOL environment** for RF antennas
- science: edge and blobs physics
 - **convective** (vs. diffusive) transport
 - strong nonlinearity (~1 fluctuations, no space scale separation)
 - emergence of **coherent** structures, **intermittency** from turbulence
- competition: parallel transport (well-known) vs. \perp convective blob transport •
 - need radial blob velocity v_x
 need blob parameters (n, T) this talk

 - need rate of blob generation (for $\langle \Gamma \rangle$)

Preview

- use gas-puff-imaging (GPI) diagnostic to extract blob parameters:
 - birth zone
 - scale size
 - radial velocity v_x
 - density and temperature (DEGAS-2 model using He 5876 emission)
- birth zone and blob parameters are related to the local maximum of the edge $\nabla ln \langle p \rangle \Rightarrow$ blob generation by underlying edge instability.
- categorize NSTX blobs by theory regime
- observed v_x bounded by theoretically predicted min and max

Outline

- theory background
- data analysis
- future work; conclusions

- theory background
- data analysis
- future work; conclusions

What is a blob?

- blob = flux tube containing (much) more plasma than its surroundings
 - localized ~ 1 density enhancement
 - coherent object formed from edge turbulence
 - filamentary along B, cm-scale across B
- moving blobs are naturally associated with:
 - convective \perp B (non-diffusive) transport
 - intermittency
- evidence for blobs comes from
 - probe data
 - Gas Puff Imaging (GPI) data
 - numerical simulation
- blob physics is relevant to
 - edge turbulence, ELMs, pellets

Blob filaments break off from edge plasma, charge polarize and convect outwards

Currents drain charges

• effective circuit resistance \Rightarrow potential Φ , speed v_x

Current path determines blob regime

Lodestar/Myra/NSTX/2005

Important parameters affecting blob speed

- scale size a_b
- T_e
- collisionality $\eta_{\parallel}(n_e, T_e)$
- field line geometry \Rightarrow position wrt. separatrix
 - L_{\parallel} (weighted connection length) or $q_{eff} = L_{\parallel}/R$
 - X-pt shear $\Rightarrow \epsilon_x \sim 1/(X-pt "fanning")$
- amplitude of blob above background plasma, $\delta n/n_{bkgd}$

- theory background
- data analysis
- future work; conclusions

Background – GPI experiment

- Gas Puff Imaging (GPI)
 - Zweben 2004; Maqueda 2003; Terry 2003
 - 2D movies of blob motion
- test theory of blob v_x
- difficult to do with probe data alone
 - 1D time-slice through blob
 - unknown impact parameter (no y info)
- NSTX GPI diagnostic well matched to blob dynamics
 - spatially and temporally
- GPI measures light intensity, not n_e, T_e
- new nonlinear camera calibration recently available
 - present results assume camera signal ∞ light intensity
 - some details may change (before APS)

sample GPI frame

shot 112825 L mode 4.5 kG, 800 kA 0.8 MW NBI He puff (HeI filter)

GPI atomic physics, and modeling

- HeI 5876 line intensity is $I = n_0 F(n_e, T_e)$ $n_0 =$ neutral He density $F(n_e, T_e) =$ atomic physics
- 2 basic ideas
 - nonlinear interchange modes **passively** convect \mathbf{n}_{e} , \mathbf{T}_{e} together $\Rightarrow \mathbf{T}_{e} = \mathbf{T}_{e}(\mathbf{n}_{e})$ from equilibrium
 - n₀ is not measured so: "calibrate" I to median ("equilibrium") n_e, T_e using Thompson Scattering, probe data [Boedo] and DEGAS-2 modeling [Stotler]

- n₀ unaffected by blobs (assume)

Determination of the n₀ profile

$$n_0 = \frac{I_{camera}}{F(n_e, T_e)}$$

 n_0 = neutral He density F(n_e, T_e) = atomic physics

• empirical procedure for deducing effective n₀ works well where I and F are large (inside separatrix for equilibrium)

- use D. Stotler's DEGAS-2 code for n₀ in far SOL and match
 - 3D Monte-Carlo simulation that tracks penetration, ionization, radiation etc. of He states
 - extract chord corresponding to 2D camera view
 - yields effective n₀ profile

Sample "inversion" $I \rightarrow n_e, T_e$

- GPI is a very sensitive blob diagnostic
- allows crude estimate of n_e and T_e of individual blobs
 - can project back to determine birth region for each blob

radial cuts through a blob

Blob birth zone confirms edge instability drive

- blobs are born with a density (and temperature) characteristic of where the underlying linear instability peaks
- not e.g.
 - condensation of turbulent structure from deeper in core
 - core SOC avalanche

Regime diagram for "typical" NSTX L-mode blobs

collisionality & blob size

- shot 112825
- blob database using n_e,T_e from "inversion" procedure
- mostly sheath-connected (CRs) regime, near RX boundary
- current loop resistance dominated by sheath resistance with some ⊥ ion polarization currents at Xpoint
- blobs are well away from resistive ballooning regime (RB)

Observed radial velocity v_x of blob tracks show large scatter

- observed velocities seem "random"
- what order, if any, is present in this dataset?
- needs a theoretical framework

Observed blob velocity is bounded by theoretical minimum

• sheath-connected blobs have minimum v_x of all the regimes

 $v_x \sim 2.9 \times 10^{10} \frac{qT_e^{3/2}}{a_b^2 B^2} f$ $f \sim \delta p/p \sim blob amp above background$

• for spatial min set $q = L_{\parallel}/R = 1 \Rightarrow v_{\min}$

Radial dependence of q_{eff}

- trend consistent with q profile expected from geometry
- significant variations of blob velocity remain and are not explained by present model
 - analysis errors?
 - parallel blob structure?
 - blob spin?

Observed blob velocity is bounded by theoretical maximum

$$v_{\text{max,theory}} \sim 6.9 \times 10^5 \frac{a_b^{1/2} T_e^{1/2}}{R^{1/2}} f$$

- blob scaling in the resistive ballooning regime gives maximum v_x
- expect and confirm that observed v_x<< v_{max}
- simple theoretical estimates bound the observed blob velocity

 $v_{min} < v < v_{max}$

- theory background
- data analysis
- future work; conclusions

Ongoing & future work

- effects of new nonlinear camera calibration (APS)
- simplified, more automated analysis that doesn't require tedious DEGAS-2 modeling
- application to more shots, and blob regimes
- numerical simulation with 2D turbulence code (D. Russell's SOLT code)
 - detailed blob dynamics
 - blob generation rate

Summary

- edge turbulence produces coherent propagating structures blobs
- blobs are born with a density and temperature characteristic of where the underlying linear instability peaks
- dynamics of blobs is consistent with simple theoretical models
 - radial blob velocity arises from blob curvature-induced charge polarization and E×B convection
 - identified the dependence on key blob parameters
 - theoretical estimates bound the observed blob velocity
- blob velocity is also influenced by effects not in the model used here:
 - parallel blob structure?
 - internal net vorticity (blob spin)?

Challenge questions

- Can we understand the dynamics of an individual blob with known properties?
 - given n_e , T_e , a_b compare observed v_x and evolution with theory and simulation

well in hand

- What properties are blobs created with and why?
 - rate & statistics of blob generation, scale size a_b , n_e , T_e
 - linear γ , k $\rightarrow a_b$, parallel mode/blob structure vs. circuit path
 - v_v shear, nonlinear coupling effects on blob generation
 - electromagnetic blobs and ELMs

exciting work for the future