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Background & MotivationBackground & Motivation

• programmatic: ITER 
– pedestal/edge parameters critical for performance, Q ⇒ understand edge T&T
– power handling: PFC damage by impact from blobs, ELMs, short-circuit divertor? 
– wall content (tritium inventory)
– SOL environment for RF antennnas

• science: edge and blobs physics
– convective (vs. diffusive) transport
– strong nonlinearity ( ~ 1 fluctuations, no space scale separation)
– emergence of coherent structures, intermittency from turbulence

• competition: parallel transport (well-known) vs. ⊥ convective blob transport
– need radial blob velocity vx
– need blob parameters (n, T)
– need rate of blob generation (for <Γ>)

this talk}
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PreviewPreview

• use gas-puff-imaging (GPI) diagnostic to extract blob parameters: 
– birth zone
– scale size
– radial velocity vx
– density and temperature (DEGAS-2 model using He 5876 emission)  

• birth zone and blob parameters are related to the local maximum of the 
edge ∇ln <p> ⇒ blob generation by underlying edge instability.  

• categorize NSTX blobs by theory regime
• observed vx bounded by theoretically predicted min and max

OutlineOutline
• theory background
• data analysis
• future work; conclusions
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•• theory backgroundtheory background

•• data analysisdata analysis

•• future work; conclusionsfuture work; conclusions
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What is a blob?What is a blob?

• blob = flux tube containing (much) more plasma than its surroundings
– localized ~ 1 density enhancement
– coherent object formed from edge turbulence
– filamentary along B, cm-scale across B

• moving blobs are naturally associated with:
– convective ⊥ B (non-diffusive) transport
– intermittency

• evidence for blobs comes from
– probe data
– Gas Puff Imaging (GPI) data
– numerical simulation

• blob physics is relevant to 
– edge turbulence, ELMs, pellets 
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Blob filaments break off from edge plasma, charge polarize Blob filaments break off from edge plasma, charge polarize 
and convect outwardsand convect outwards

• curvature
– [Krasheninnikov 2001, D'Ippolito 2002]

• ∇ neutral friction 
– [Krasheninnikov 2003]
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Currents drain charges Currents drain charges 

• charges separate by curvature drift
• charges drain by J|| to

– sheaths
– X-point (thin fans reduce ⊥ resistance)
– outgoing Alfvén waves

• charges mix by spin
• effective circuit resistance ⇒ potential Φ, 

speed vx
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Current path determines blob regimeCurrent path determines blob regime

each regime has a characteristic magnitude 
and scaling of blob radial velocity 
vx(ne, Te, ab; B, q, R) 
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Important parameters affecting blob speedImportant parameters affecting blob speed

• scale size ab
• Te
• collisionality η||(ne, Te)
• field line geometry ⇒ position wrt. separatrix

– L||, (weighted connection length) or qeff = L||/R
– X-pt shear ⇒ εx ~ 1/(X-pt “fanning”)

• amplitude of blob above background plasma, δn/nbkgd
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Background Background –– GPI experimentGPI experiment
• Gas Puff Imaging (GPI)

– Zweben 2004; Maqueda 2003; Terry 2003
– 2D movies of blob motion

• test theory of blob vx

• difficult to do with probe data alone
– 1D time-slice through blob 
– unknown impact parameter (no y info)

• NSTX GPI diagnostic well matched to blob 
dynamics
– spatially and temporally

• GPI measures light intensity, not ne, Te
• new nonlinear camera calibration recently 

available
– present results assume camera signal ∝ light 

intensity
– some details may change (before APS)

plasma edge

blob

plasma edge

blob

sample GPI frame

shot 112825
L mode 4.5 kG, 800 kA 
0.8 MW NBI
He puff (HeI filter)
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GPI atomic physics, and modelingGPI atomic physics, and modeling
• HeI 5876 line intensity is  I = n0 F(ne, Te)

n0 = neutral He density
F(ne, Te) = atomic physics

• 2 basic ideas
– nonlinear interchange modes passively 

convect ne, Te together 
⇒ Te = Te(ne) from equilibrium

– n0 is not measured so: “calibrate” I to
median (“equilibrium”) ne, Te using 
Thompson Scattering, probe data [Boedo] 
and DEGAS-2 modeling [Stotler]

• apply inverse mapping of I → ne, Te derived 
from equilibrium profiles to turbulent (bloby) 
camera frames
– n0 unaffected by blobs (assume)

n,T



13Lodestar/Myra/NSTX/2005

Determination of the nDetermination of the n00 profileprofile

• empirical procedure for deducing effective 
n0 works well where I and F are large 
(inside separatrix for equilibrium)

• use D. Stotler’s DEGAS-2 code for n0 in far 
SOL and match
– 3D Monte-Carlo simulation that tracks 

penetration, ionization, radiation etc. of He 
states

– extract chord corresponding to 2D camera 
view 

• yields effective n0 profile

n0 = neutral He density
F(ne, Te) = atomic physics
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Sample Sample ““inversioninversion”” I I →→ nnee, T, Te e 

• GPI is a very sensitive 
blob diagnostic

• allows crude estimate 
of ne and Te of 
individual blobs

• can project back to 
determine birth region 
for each blob
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Blob birth zone confirms edge instability driveBlob birth zone confirms edge instability drive

• blobs are born with a 
density (and 
temperature) 
characteristic of where 
the underlying linear 
instability peaks

• not e.g.
– condensation of 

turbulent structure 
from deeper in core

– core SOC avalanche
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Regime diagram for Regime diagram for ““typicaltypical”” NSTX LNSTX L--mode blobsmode blobs

• shot 112825
• blob database using ne,Te from 

“inversion” procedure
• mostly sheath-connected (CRs) 

regime, near RX boundary
• current loop resistance dominated 

by sheath resistance with some ⊥
ion polarization currents at X-
point 

• blobs are well away from 
resistive ballooning regime (RB)
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Observed radial velocity Observed radial velocity vvxx of blob tracks show large scatterof blob tracks show large scatter

radial position
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• observed velocities seem “random”
• what order, if any, is present in this dataset?
• needs a theoretical framework
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Observed blob velocity is bounded by theoretical minimumObserved blob velocity is bounded by theoretical minimum

• sheath-connected blobs have minimum vx of all the regimes

• for spatial min set q = L||/R = 1 ⇒ vmin

22
b

2/3
e10

x
B

qT
109.2~v

a
× f f ~ δp/p ~ blob amp above background

200 400 600 800 1000 1200

200

400

600

800
1000

1200

v x
,o

bs
er

ve
d(

m
/s

)

vmin, theory(m/s)
200 400 600 800 1000 1200200 400 600 800 1000 1200

200

400

600

800
1000

1200

200

400

600

800
1000

1200

v x
,o

bs
er

ve
d(

m
/s

)

vmin, theory(m/s)



19Lodestar/Myra/NSTX/2005

Radial dependence of Radial dependence of qqeffeff

• trend consistent with q 
profile expected from 
geometry

• significant variations of 
blob velocity remain and 
are not explained by 
present model
– analysis errors?
– parallel blob structure?
– blob spin?
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Observed blob velocity is bounded by theoretical maximumObserved blob velocity is bounded by theoretical maximum

• blob scaling in the resistive 
ballooning regime gives 
maximum vx

• expect and confirm that 
observed vx<< vmax

• simple theoretical estimates 
bound the observed blob 
velocity
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Ongoing & future workOngoing & future work

• effects of new nonlinear camera calibration (APS)
• simplified, more automated analysis that doesn’t require tedious DEGAS-2 

modeling
• application to more shots, and blob regimes
• numerical simulation with 2D turbulence code (D. Russell’s SOLT code)

– detailed blob dynamics
– blob generation rate



23Lodestar/Myra/NSTX/2005

SummarySummary

• edge turbulence produces coherent propagating structures - blobs
• blobs are born with a density and temperature characteristic of where the 

underlying linear instability peaks
• dynamics of blobs is consistent with simple theoretical models

– radial blob velocity arises from blob curvature-induced charge polarization and 
E×B convection 

– identified the dependence on key blob parameters
– theoretical estimates bound the observed blob velocity

• blob velocity is also influenced by effects not in the model used here:
– parallel blob structure?
– internal net vorticity (blob spin)?
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Challenge questionsChallenge questions

• Can we understand the dynamics of an individual blob with known 
properties?
– given ne, Te, ab compare observed vx and evolution 

with theory and simulation

• What properties are blobs created with and why? 
– rate & statistics of blob generation, scale size ab, ne, Te
– linear γ, k → ab, parallel mode/blob structure vs. circuit path
– vy shear, nonlinear coupling effects on blob generation
– electromagnetic blobs and ELMs

well in hand

exciting work for 
the future
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