

XP616 Summary: Moveable Glow Probe Evaluation

R. Maingi*, H. Kugel * Oak Ridge National Laboratory

NSTX Physics Meeting Princeton, NJ March 6, 2006

All major target questions answered in XP 616 -Moveable Glow Probe Evaluation

- Does the moveable glow probe allow a reduction of the NSTX shot cycle? Yes
 - At least down to 12.5 min (6.5-7 min HeGDC) and maybe down to 10 min. (4-4.5 min. HeGDC)
 - Shorter glows require less fueling for long pulse
- Does a lower HeGDC pressure improve discharge performance? No
 - compared 2, 3, and 4 mTorr with 7 min. HeGDC
- Is the moveable glow probe more effective than the fixed wall probe for long pulses? No
 - Each allowed 1MA 1 sec pulses in double-null

Several other conclusions from XP 616

- Plasma shape must be close to DN or biased slightly down to facilitate H-mode access (i.e. $\delta_r^{sep} \leq 3-5$ mm)
 - > Confirms conclusions from power threshold XP 505 which was at lower I_p , κ and δ
 - $> P_{LH}$ between 1 and 2 NBI srcs
- Achieved 10 double-null discharges at 1 MA with I_p flattop past 0.8 sec and many in a row

> Only 4 at the end of last year's run on different days

✓ Conclude that wall conditions are quite good now

Reproducible long pulse discharges achieved with 6.5 min HeGDC between discharges

Fueling reduced in steps from 119034-119040 1.5 I_p [MA] 1.0 0.5 NBI power/10 [MW] 0.0 n_e^{FR} [10¹⁹ m⁻³] 10 6 4 8 400 300 W_{MHD} [kJ] EFIT01 200 100 0 38 28 10 I_{oH} [kA] Moveable Glow probe 0 -10 Ldiv O-II [au] 119033 119034 9037 9040 1.0 0.0 0.2 0.4 0.6 0.8 Time [sec]

Page 4

Discharge performance not strongly affected by

Page 5

Similar long pulse discharges achieved with fixed and moveable HeGDC probes

• Did recycling go down considerably overnight? Or gain change?

Page 6

H-mode access easier as lower X-point becomes more dominant

Longest pulse 1 MA discharge from this year nearly identical to longest 1 MA discharge from last year

• Need to check if D_{α} gains were the same

Further questions from XP 616 results

- Can we achieve a 10 minute shot cycle with these high power, long pulse discharges
 - Maybe, but that requires more testing; #119048 was such a single discharge test case
- Assuming the good wall conditions are due to the second bake, would we make another improvement with a inter-run bake?
- What are the prospects to lengthen these long pulse discharges through early H-mode at 80-90 msec?
 - > Reasonable: D_{α} showed possible signs of dropping into dithers; I_{p} flat spot and fueling to be optimized
- How does access to small ELMs depend on $\delta_{\text{r}}^{\text{sep}}$ and recycling?