Substantial Progress Made on XP 619

 XP to explore the passive stability physics of the RWM

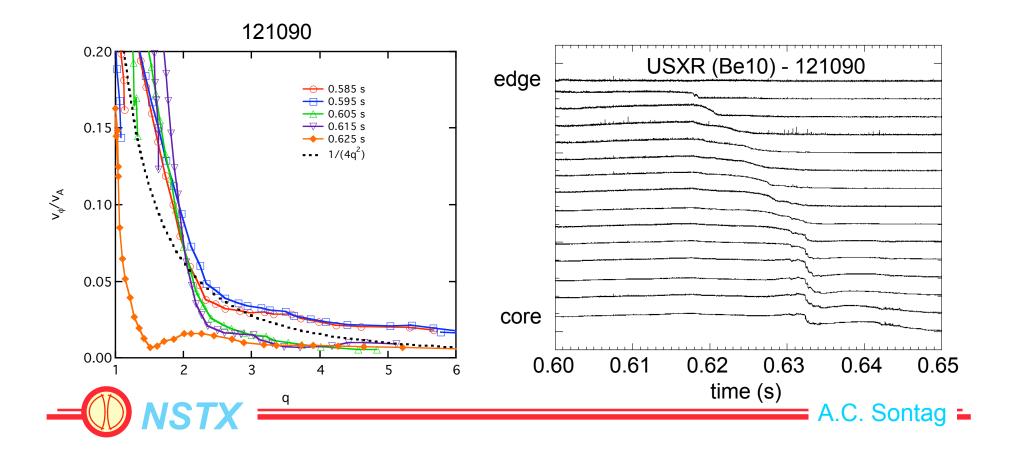
parametric dependencies of dissipation mechanism(s)

- scan Alfven speed and ion collisionality at constant q
 use n=3 braking to induce RWM
- scans performed at two q values 7 conditions total
 - □ 0.7 MA < I_p < 1.1 MA 0.35 T < B_{TF} < 0.55 T
 - □ able to vary v_A by ~65%
 - nearly an order of magnitude variation in v_{ii}

more shots desirable

- adjust rotation braking some shots brake too fast
- expand v_A range & more even spread in parameters

🚍 A.C. Sontag 🖬


adjust shape, density - increase β_N , eliminate n=1

Good Ω_{crit} Data Obtained for Several Conditions

• Variations in Ω_{crit} expected with varying dissipation

Slower mode onset allows for better determination

