

200 kW, 28/15.3 GHz ECH/EBWH System for NSTX Plasma Start-up & Current

Ramp-up

(for ORNL & PPPL RF Technology Groups)

Physics Review NSTX Physics Meeting December 4, 2006

200 kW 28/15.3 GHz ECH/EBWH System for NSTX Plasma Start-up & Current Ramp-up - G. Taylor - December 4, 2006

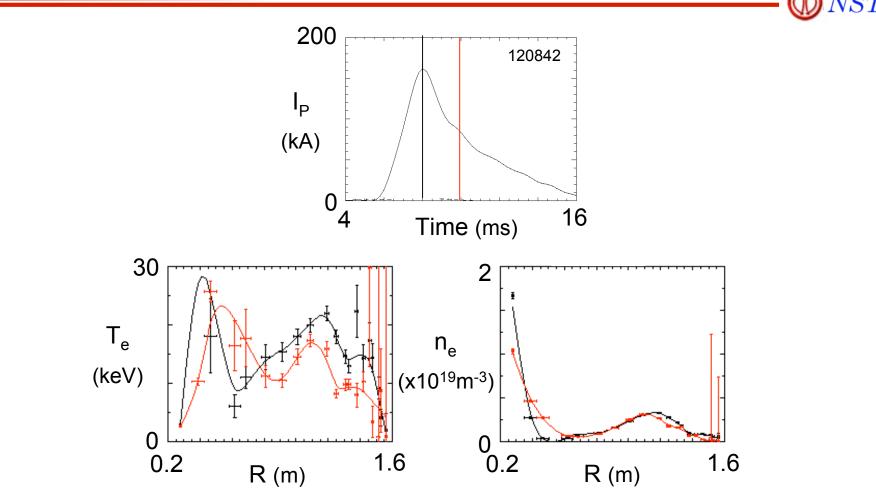
- Physics Justification
- Technical Details
- Budget & Schedule
- Summary

ISTX

- Technical Details
- Budget & Schedule
- Summary

200 kW ECH/EBWH System Supports Non-Solenoid Start-up & EBWH Tests Into I_p Flat Top

- EC pre-ionization for standard inductive discharges
- Heating for CHI & PF-only start-up plasmas (low n_e , T_e)
- Heat start-up plasma to ~ 100 eV to enable effective HHFW electron heating
- Support transition from ECH/EBWH/CHI start-up to HHFW current ramp-up
- Support low power EBW coupling studies & initial on-axis electron heating experiments during I_p flat top
- Operational for 2008 NSTX run



ECH/EBWH System Provides Transition from Non-Solenoid Startup to HHFW I_p Ramp

CHI for plasma initiation, early ramp Þ (also PF-only ramp-up) - High power EC pre-ioniz. - EBW heating to T_a > 100eV **HHFW** for ramp-up of low I_P CHI plasma - Bootstrap + FWCD **NBI+HHFW** for higher I_P ramp-up time **HHFW** HHFW+NBI - Bootstrap + FWCD + NBICD CHI

CHI Start-up Plasma Reaches T_e(0) ~ 15-20 eV, n_e(0) ~ 3x10¹⁸ m⁻³

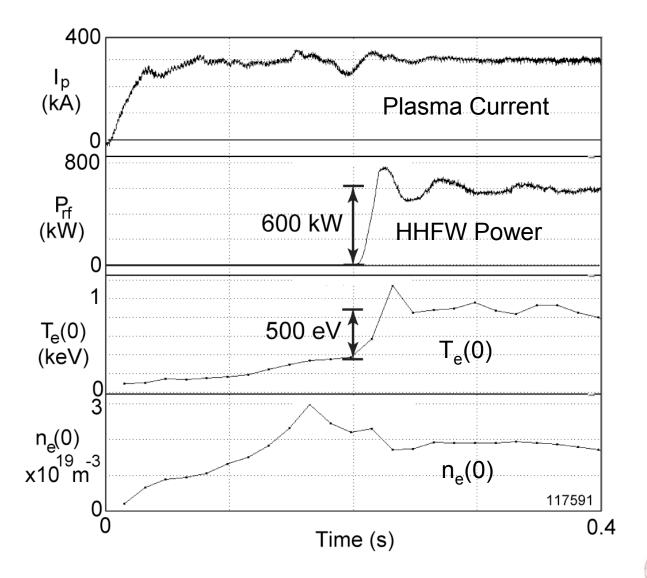
 n_e and T_e with CHI or PF-only start-up are likely too low for effective HHFW heating

6

200 kW 28/15.3 GHz ECH/EBWH System for NSTX Plasma Start-up & Current Ramp-up - G. Taylor - December 4, 2006

If CHI Plasma T_e can be Increased to >100 eV HHFW Electron Heating Significantly Improves

• HHFW electron TTMP heating rate approx. scales as:


$$P_{e} \sim \beta \frac{\omega^{2}}{k_{//} v_{T_{e}}} e^{-(\omega/k_{//} v_{T_{e}})^{2}} \text{ For } T_{e} \sim 100 \text{ eV, } e^{-(\omega/k_{//} v_{T_{e}})^{2}} \sim 0.006$$

For $T_{e} \sim 300 \text{ eV, } e^{-(\omega/k_{//} v_{T_{e}})^{2}} \sim 0.170$

 For B_t(0) ~ 0.43 T, k_{//} = 14 m⁻¹ "quick & dirty" METS runs (by CKP) predict:

T _e (0)	n _e (0)	Single Pass Absorption	
100 eV	0.5x10¹ ⁹ m⁻³	2%	
100 eV	2.4x10 ¹⁹ m⁻³	18%	
300 eV	2.4x10¹ ⁹ m⁻³	50%	

Low I_p, n_e & T_e HHFW Supports ~100 kW of EBWH Being Detectable with <100% Coupling

28 GHz $2f_{ce}$ On-Axis ECH at $B_o = 0.55$ T when $n_e(0) < 9x10^{18}$ m⁻³

ECH Resonance Locations on NSTX R = 0.85 m, r = 0.62 m, $B_o = 0.3 T$

Frequency/	Resonant Field	Major Radius	Normalized	Critical
Harmonic #	(T)	(m)	Minor Radius	Density
				x10 ¹⁸ m ⁻³
28 GHz/fund	1	0.26	-0.9	9.2
2nd	0.5	0.52	-0.5	
3rd	0.33	0.78	-0.1	
15.3 GHz/fund	0.55	0.47	-0.58	2.7
2nd	0.27	0.94	0.15	

ECH Resonance Locations on NSTX $R = 0.85 \text{ m}, r = 0.62 \text{ m}, B_o = 0.55 \text{ T}$

Frequency/	Resonant Field	Major Radius	Normalized	Critical
Harmonic #	(T)	(m)	Minor Radius	Density
				x10 ¹⁸ m ⁻³
28 GHz/fund	1	0.47	-0.61	9.2
2nd	0.5	0.94	0.14	
3rd	0.33	1.41	0.9	
15.3 GHz/fund	0.55	0.86	0.02	2.7

STX

- Physics Justification
- - Budget & Schedule
 - Summary

ORNL Can Provide 28 GHz Gyrotron; 15.3 GHz Operation Needs to be Demonstrated

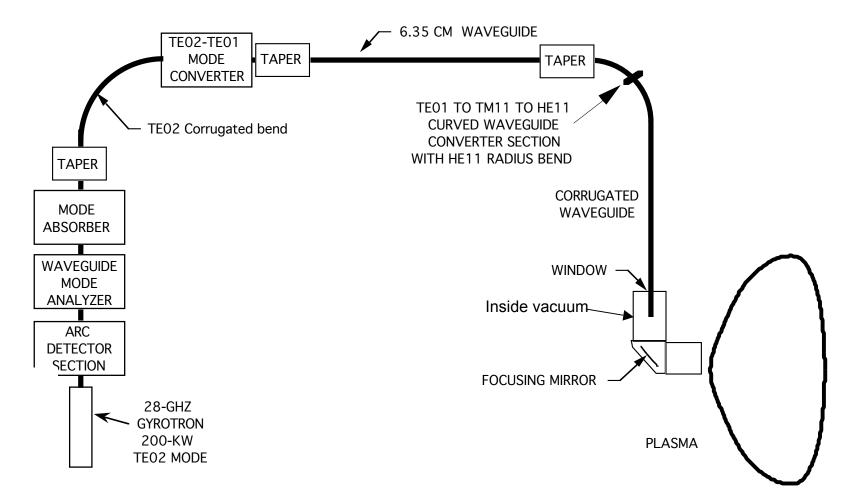
- 350 kW pulsed (200 kW cw) 28 GHz gyrotrons available from ORNL for loan to PPPL
- Test transition to 15.3 GHz (TE02→TE01) with 40 kW
 28 GHz gyrotron at ORNL by February 2007:
 - Controls, magnet, waveguide all compatible with either 15.3 GHz or 28 GHz operation
 - Efficiency and mode purity may be reduced at 15.3 GHz
 - Double disk window gap tuning and some component changes needed to change from 28 GHz to 15.3 GHz
- ORNL has sockets and 1.2 MW HV modulator/regulator that are available for loan to PPPL
- Use modified PPPL TFTR NBI power (-90 kV @ 40 A)

Test 15.3 GHz TE01 Mode Operation with 40 kW Standalone 28 GHz Gyrotron System at ORNL

ORNL 40 kW Standalone 28 GHz Gyrotron System

200 kW 28/15.3 GHz ECH/EBWH System for NSTX Plasma Start-up & Current Ramp-up - G. Taylor - December 4, 2006

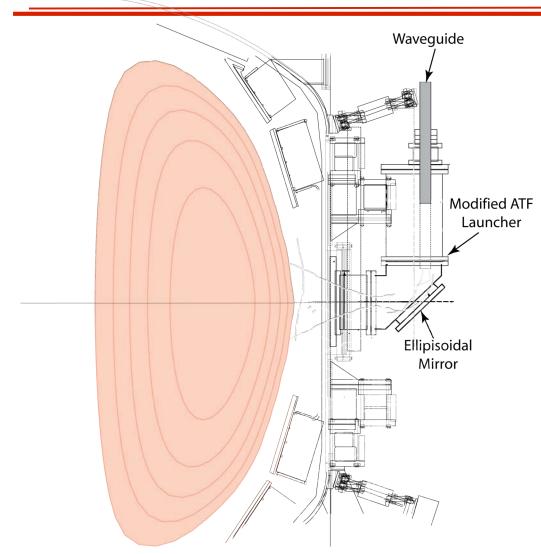
NSTX


Four 28 GHz 200 kW CW Gyrotrons, Magnets & Sockets Available at ORNL

- 350 kW pulsed (~ 500 ms) gyrotron operation needs 80kV @ 12A
- Gun and collector magnets, with supplies, available from ORNL:
 - 26V @ 480A typical operating point
 - Remote control and monitoring
- FC-75 cooled window
- Several possible locations for installing Gyrotron, both inside & outside NSTX test cell, identified

28/15.3 GHz Waveguide and Launcher Hardware Available from ORNL

• TE02, TE01 and HE11 (corrugated) waveguide



200 kW 28/15.3 GHz ECH/EBWH System for NSTX Plasma Start-up & Current Ramp-up - G. Taylor - December 4, 2006

14

NSTX

Minimize Cost for Initial Installation By Using Adapted ATF ECH Launcher

ATF ECH Launcher

Require 16 inch conflat flange on midplane port

200 kW 28/15.3 GHz ECH/EBWH System for NSTX Plasma Start-up & Current Ramp-up - G. Taylor - December 4, 2006

- Physics Justification
- Technical Details
- - Summary

Budget

- ORNL ~ \$950k (requires increased collaboration funding)
 - Test 28 to 15.3 GHz conversion (~\$110k, funding approved)
 - Gyrotron, socket, magnet, waveguides, mode converters, launcher
 - Mod/Reg, magnet supplies, local controls & interlocks
 - Decision on increase NSTX collaboration funding in March 2007
- PPPL ~ \$1350k (FY07: ~\$650k, FY08: ~\$700k)
 - Utilities: water, power, oil containment
 - Installation of gyrotron, transmission line & launcher
 - Modification & installation of HV supply, remote controls
 - Safety review
 - Requires only ~ \$100k of M&S funding at PPPL (mostly in FY08)

Schedule

- 28 -> 15.3 conversion test at ORNL (Dec 06 Feb 07)
- Refurbish gyrotron, socket & mod/reg at ORNL (FY07)
- Site layout & preparation at PPPL (FY07)
- Install system on NSTX (Oct 07 Jan 08)
- In-situ system commissioning (Feb 08)
- Delay in HHFW antenna upgrade schedule:
 - Double feed upgrade to increase power capability by factor of two delayed until late 2008
 - Faraday shield modification to reduce reactive field plasma interaction delayed until late 2008

- Physics Justification
- Technical Details
- Budget & Schedule
- ➤• Summary

Summary

 $\mathbb{D}NSTX$

- ORNL & PPPL are proposing ~200 kW ECH/EBWH that can benefit NSTX in several areas:
 - Intense ECH pre-ionization for standard inductive discharges
 - Heating for CHI & PF-only start-up plasmas
 - Provide ~ 100eV start-up plasma for effective HHFW heating
 - Support ECH/EBWH/CHI transition to HHFW current ramp-up
 - Conduct low power EBW coupling & heating during I_p flat top
- System can be operational at 28 & 15.3 GHz for FY08 NSTX run campaign:
 - Needs only modest development and testing (e.g. verify 15.3 GHz operation)
 - Requires only ~ \$100k of M&S at PPPL
- Most significant negative impact on NSTX is to delay HHFW antenna upgrade by ~ 1 year

