

Alcator C-Mod 2007 PAC meeting highlights – M. Peng

- Wednesday, January 24, 2006 13:00 Executive Session Rich Groebner ٠ Miklos Porkolab 13:15 Welcome and Charge 13:25 Comments from DoE Adam Rosenberg 13:30 Program Overview Earl Marmar Ron Parker 14:30 Lower Hybrid RF 15:00 Cryopump Brian LaBombard 15:20 Break Martin Greenwald 15:30 Transport ٠ 16:00 Macro-stability **Bob Granetz** 16:30 Ion Cyclotron RF Steve Wukitch ٠ 17:00 Executive Session 19:30 Dinner (off-site) Thursday, January 25 8:30 Plasma Boundary Bruce Lipschultz ٠ 9:00 Facilities and Diagnostics Jim Irby 10:00 Theory and Modeling Paul Bonoli 10:45 Break 11:00 Integrated Scanarios: H-Mode Baseline Steve Wolfe 11:30 Integrated Scenarios: Advanced Scenarios Amanda Hubbard 12:00 Ideas Forum Jerry Hughes 12:15 Run Planning Steve Wolfe 12:30 Lunch (on-site) 13:15 Tour 14:00 Executive Session/Discussions with C-Mod team as desired Friday, January 26 8:00 Executive Session - Draft response 11:00 Debriefing 12:00 Adjourn
 - Rich Groebner, General Atomics (Chair)
 - Chuck Kessel, PPPL
 - Brian Lloyd, UKAEA, Culham
 - · Alberto Loarte, EFDA, Garching
 - Dale Meade, PPPL (retired)
 - Craig Petty, General Atomics
 - Paul Terry, U. Wisconsin-Madison
 - Jim Van Dam, U. Texas-Austin
 - Adam Rosenberg, OFES (ex-officio)

C-Mod program is directed to support ITER strongly

Unique dimensional regimes

Alcator

C-Mod

- ITER B field, density, power density, plasma pressure
 - Disruption mitigation
 - Neutral opacity, Radiation Transport
- High leverage database contributions
 - Dimensionally unique
 - Non-dimensional match to larger, lower field tokamaks
- ITER heating and current drive tools
 - Lower Hybrid Off-Axis CD
 - ICRF minority heating, MCCD
 - Torque and particle source free
 - Transport-driven rotation
- All-metal high-Z Plasma Facing Components
 - Molybdenum \rightarrow Tungsten
 - Tritium retention, Impurity dynamics, Detachment
 - Wall conditioning; Low-Z wall coatings

B ≤ 8.1 T, I ≤ 2.0 MA

 $0.1 \times 10^{20} < n_{p} < 10 \times 10^{20}$

 $P_{\parallel}(SOL) \le 0.5 \text{ GW/m}^2$

 $\beta_{\rm N} \le 1.8, Z_{\rm eff} \sim 1.5$

 $B_{T} = 5.3T, I_{p} = 15MA$

$$\beta_{\rm N}$$
 = 1.75, $Z_{\rm eff}$ < 1.6
 $n_{\rm e}$ = 1x10²⁰ m⁻³
 P_{\parallel} (SOL) \approx 1 GW/m²

Alcator C-Mod Scenarios using LHCD

- As shown in LH talk by Ron Parker, C-Mod exceeded target for 2006 campaign (which was 500 kW). Coupled > 900 kW.
- Also exceeded CD target;
 > 80% non-inductive (transient V_{loop}=0) at 1 MA. ('Phase I' target was 50% non-inductive).
- Implemented non-thermal diagnostics, extensive modeling of LHCD experiments, with generally good agreement; Further work is in progress.

Alcator C-Mod Projections to fully NI plasmas suggests future upgrades to 4 MW for 1 MA.

Note: $n_{-} = \text{density} @ T_{-} = 2.2 \text{ keV}$

Using method of Giruzzi¹: $I_p = I_{Ohmic} + I_{Ih} + I_{hot}$ $I_{Ohmic} = V/R_{Ohmic}$ $I_{LH} = \eta_0 P_{Ih} / n_{e19} R_0$ $I_{hot} = V/R_{hot}$ Fit: $y = (\eta_0 + \eta_1)x/(1 + \eta_1 x)$ $\eta_0 = n_{19} IR/P = 3.1 \pm 0.1$ $\eta_1 = 0.25 \pm 0.25$ $=R_{Ohmic}n_eI_pR_0/R_{hot}P_{Ih}$ ¹Giruzzi, G.,et.al.,Nuclear Fusion, 37 (1997) 673

R. Wilson

Alcator C-Mod Scenario modeling of LHCD profile control

TSC couple with source terms from CQL3D and TRANSP

Alcator C-Mod New cryo-pump is being installed and commissioned to support AT research

10,000 liters/s pumping speed (D₂)

'Duplicate' of C-Mod pump fully instrumented and tested off-line in a dedicated vacuum chamber

- Guided by experiments, design has evolved into a novel system of 30 'pumping slots'
- Pumping throughput insensitive to radial location of upper separatrix
- Design accommodates vertical port laser access to R_{min}= 0.62 m (Thomson, TCI, PCI,...)

- Pumping throughput controlled dynamically via secondary separatrix

Alcator C-Mod Profile with no particle source

- ITER Interest better fusion performance with moderate density peaking
- Results from ASDEX, JET at low v^*
- We've begun work on this (in a high-triangularity shape)
- High Priority Experiment: Exploit cryopump to broaden experimental base, scan ν*, δ, q₉₅ (ITPA CDB-9)
- Pedestal studies carried out at same time

Addition of C-Mod data suggest that v_{eff} is appropriate scaling variable rather than n/n_{G} (These are strongly correlated, especially on any given machine) – Good news for ITER

Alcator C-Mod ITB research aims to verify model and correlate measured fluctuations with transport

- High Priority Expt: Verify model for barrier control via TEM turbulence using upgraded PCI measurements
- Barrier foot is a particularly interesting region
- High Priority Experiment: Measure fluctuations at foot of barrier
- Reflectometer
 - Correlation length measurements
 - 140GHz channel = 2.4x10²⁰
- Improved T_i profiles with HIREX III
- Background Experiments: Prepare ground for barrier experiments w/ modified shear

Alcator C-Mod C-Mod Fransport barrier & control experiments will focus on effects of magnetic shear

- To date, we have been studying ITBs with 'normal' shear – in contrast to most other experiments.
- Now that current profile control tool is available, we will focus on studying effects of magnetic shear on transport, ITB formation and properties.
 - First step in 2007 will be to add LHCD to ITBs formed using off-axis ICRF.
 - How does shear change affect ITB threshold, and foot location?
- In future phase, will study ITBs produced by LH shear reversal.
- All experiments will be in ITERrelevant regime with coupled electrons and ions, no momentum or particle input, pulse length > τ_{CR} All of particular importance for ITBs.

2007 experiments will use as LH target the low n_e ITBs being developed in the Transport topical area.

Alcator C-Mod C-Mod C-Mod C-Mod C-Mod C-Mod C-Mod C-Mod C-Mod C-Mod

Alcator C-Mod More detailed comparisons between measurement and theory are planned

Status:

- Synthetic PCI density fluctuation profile agrees with experiment.
- Improved absolute amplitude agreement after finding code renormalization problem.
- Implemented synthetic CNPA diagnostic and good agreement with Fokker-Planck simulation.

Plans:

- Implement improved absolute calibration of experimental data and compare with simulation amplitudes.
- Use CNPA to measure tail energy for second harmonic H scenario to test upgraded simulation capability.

Alcator C-Mod An array of numerical tools are brought to bear on the ICRF launcher and heating physics issues

Alcator Antenna-edge boronization erosion and impurity production and deposition research is planned

Ant 2

Status:

C-Mod

- Enhanced erosion/impurity production ٠ is localized to the active antenna
- Identified outer divertor tiles as most . important impurity source.
- Antenna characteristics dominate potential far-field effects.

Plans:

- Installed marker tiles to further ٠ investigate localization and erosion rates.
- Assess what makes the shelf location the dominant core Mo contributor.

- Consistent with ballooning-like transport + X-pt location setting flow direction on high-field side
- 'Favorable' $Bx\nabla B$ corresponds to co-current directed flow in SOL

Alcator C-Mod through 2007

- New high-field side 'WASP' probes becoming operational flows, fluctuation-induced transport,... (PhD thesis topic)
- New Mach probe heads on all three scanning probes: high-field, low-field side & vertical probes =>better measure of ⊥ & || flows

High heat-flux, tungsten electrode geometry

 CXRS measurements of boron and deuterium (high-field and low-field side views) will help assemble picture of flows across the separatrix (PhD thesis topic)
 Key topics

- Edge flow patterns at L-H transition and in H-mode
- What mechanism 'closes the flow loop' between high and low-field SOLs
 - inward ion pinch? neutral recycling? Influence of detached divertor?

Theory & Modeling Contacts

- A. Pigarov (UCSD) comparison of observed and modeled flow patterns with UEDGE
- P. Catto (MIT) and A. Simakov (LANL) exploit topological symmetries to analyze updown symmetric and asymmetric contributions to flow field

Alcator C-Mod Extensive array of probe diagnostic are being made available for boundary physics studies

- WASPs on high-field SOL (PhD thesis topic)
- New Langmuir probe array in Upper Divertor
 - Support of cryopump physics experiments
 - Opportunity for ELM studies at high triangularity
 - Useful SOL radial transport analysis and studying mainchamber recycling
- Prototype fast sweep I-V probe drive electronics to be tested on the Horizontal Scanning Probe
 - PhD thesis topic
 - Goal to simultaneously resolve fluctuations in 3 field quantities (T_e , n_e , Φ) at ~ 1 MHz
 - => more direct information on turbulent cross-field particle and heat fluxes than standard Langmuir probe sweeps

Alcator C-Mod Diagnostic resolutions are being upgraded to enable electron energy and momentum transport studies

Major diagnostic initiative ⇒ HIREX III + NeSox + CXRS

New high-resolution x-ray spectrometer (HIREX III) with increased radial coverage, resolution, time response (part of MIT/PPPL collaboration)

Alcator C-Mod C-Mod Central ICRF heated plasmas

Alcator C-Mod NIMROD simulations of Gas-Jet mitigation experiments show that equilibrium edge is rapidly cooled

•2/1 mode appears first and stochastic fields form at the edge, eventually destroying all field lines outside q=1

•1/1 mode levels core temperature by swapping cold island with hot magnetic axis

Alcator C-Mod C-MO

During initial jet penetration, code reproduces large density increase for He jet; small spike at leading edge plus density drop for Ar jet

When MHD modes begin to destroy flux surfaces, radiated power $\Rightarrow \sim GW$

Alcator C-Mod Synthetic PCI analysis of 2-D TAE mode by NOVA-K matches the PCI measurements

NOVA-K calculated 2-D mode structure is integrated along PCI beam lines and compared to measured PCI profile.

Multiply-peaked structure is a result of phase interference from the line integration of the signal.

Alcator C-Mod fractions and long pulses

- Other planned scenarios use reduced I_p (400-450 kA) to maximize non-inductive current fraction with available P_{LH}.
 - 2006 expts achieved f_{BS}~22% in H-mode, without LHCD. Prior TRANSP modeling shows adding LHCD should amplify this.
- Explore adding LHCD in I_p ramp to see effect on j(r).
 - Likely different than other experiments due to short τ_{CR} on C-Mod.
- Both L-mode and H-mode regimes are of interest; also ITBs for greater f_{BS} (will not be time for all options in 2007).

Alcator Extend high performance plasmas at ITER field, shape, $I/aB \& \beta$, integrating confinement, heating & particle control

- Use cryo-pump for density control, lower collisionality
- Expanded parameter space for databases and extrapolation to ITER
- Demonstration of operation at ITER absolute pressure

Alcator C-Mod Run schedule and run time allocation

ID	Task Name	Duration	Start	Finish	Qtr 1, 2007	Qtr 2, 2007				Qtr 3, 2007		
					Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
1	pumpdown	0 days	Fri 2/9/07	Fri 2/9/07		◆↓2/9						
2	bake/ecdc	17 days	Fri 2/9/07	Sun 2/25/07								
3	plasma condition	14 days	Tue 2/27/07	Wed 3/21/07								
4	plasma ops #1 (78 MHz)	14 days	Thu 3/22/07	Fri 4/13/07								
5	maintenance	5 days	Mon 4/16/07	Fri 4/20/07								
6	plasma ops #2 (reversed field)	6 days	Tue 4/24/07	Wed 5/2/07								
7	maintenance	2 days	Thu 5/3/07	Fri 5/4/07					Ŀ.			
8	plasma ops #3 (78 MHz)	12 days	Tue 5/8/07	Fri 5/25/07								
9	maintenance	5 days	Mon 5/28/07	Fri 6/1/07								
10	plasma ops #4 (78 MHz)	16 days	Tue 6/5/07	Fri 6/29/07								
11	maintenance	5 days	Mon 7/2/07	Mon 7/9/07								
12	plasma ops #5 (50 MHz)	8 days	Tue 7/10/07	Fri 7/20/07								
13	maintenance	5 days	Mon 7/23/07	Fri 7/27/07								L
14	plasma ops #6 (70 MHz)	4 days	Tue 7/31/07	Fri 8/3/07								
15												
16	TTF	4 days	Tue 4/17/07	Fri 4/20/07								
17	RF Conference	3 days	Mon 5/7/07	Wed 5/9/07								
18	EPS	5 days	Mon 7/2/07	Mon 7/9/07								

Alcator C-Mod Schedule as of 01/23/2007

Initial Allocation (days)

Operations	6
Diagnostics	4
Divertor/Edge	6
Transport	10
MHD	6
Lower Hybrid	9
ICRF Physics	6
Integrated Scenarios (H-mode Baseline)	6
Integrated Scenarios (AT)	7
Total	60