🕦 NSTX

Physics Considerations for the Design of the Liquid Lithium Divertor for NSTX

R. Maingi, ORNL

Liquid lithium divertor physics design discussion

Princeton, NJ March 9, 2007

Possible Physics Design Goals of the LLD project

 Reduce the steady H-mode density down to the target value in the ISD simulations, i.e. by 15-25% in I_P~0.75 MA long pulse scenario (0.67 - 0.8 * n_{GW})

Specific shape implied

- Allow a full factor of two density range in an optimized plasma shape for collisionality scans
- Test power handling capability of a liquid lithium divertor?

Integrated modeling points to importance of shaping, reduced n_e , and increased T_e/τ_F for higher f_{NI} and high β_N

Fully non-inductive scenario at high β_N requires higher confinement, higher q, strong plasma shaping

- Need 60% higher T, 25% lower n_e
- higher $q_0 \approx q_{min} \approx 2.4$ (higher withwall limit $\beta_N \leq 7.2$)

- Higher κ for higher q, $\beta_{\text{P}},\,f_{\text{BS}}$
- High δ for improved kink stability

ISTX

- The following LLD design parameters need to be specified (target: April 15, 2007):
 - 1) Tray Width
 - 2) Tray Major Radius R_{tray}
 - 3) Number of tray segments, gap size(s) between segments, and clocking of segments $(\phi_{min}-\phi_{max})$

Tray parameters can be related to total lithium surface area

NSTX

- The following LLD design parameters need to be specified (target: April 15, 2007):
 - 1) Tray Width
 - 2) Tray Major Radius R_{tray}
 - 3) Number of tray segments, gap size(s) between segments, and clocking of segments $(\phi_{min}-\phi_{max})$

NSTX

• Possible figure of merit (for a given shape, R_{trav}):

- The following LLD design parameters need to be specified (target: April 15, 2007):
 - 1) Tray Width
 - 2) Tray Major Radius R_{tray}
 - 3) Number of tray segments, gap size(s) between segments, and clocking of segments $(\phi_{min} \phi_{max})$
- Minimum density will depend on tray-OSP distance

VSTX

- The following LLD design parameters need to be specified (target: April 15, 2007):
 - 1) Tray Width
 - 2) Tray Major Radius R_{tray}
 - 3) Number of tray segments, gap size(s) between segments, and clocking of segments $(\phi_{min} \phi_{max})$
- Other physics limits may impact density window

VSTX

Pumping calculations will help specify the LLD design parameters

- 0-D calculations
 - Parameterized as ratio of pump to core fueling probabilities
 - Requires an assumed relation between pump probability and lithium surface area
- 1-D calculations
 - Onion-skin OEDGE type, requires assessment for NSTX
- 2-D fluid calculations (model)
 - T. Rognlien did NSTX calculations in the past for ALPS/APEX
- 2-D fluid + lithium transport calculations (model)
 - T. Rognlien/J. Brooks did NSTX calcs in the past for ALPS/APEX
- 2-D fluid plasma (data-constrained base case)
 - G. Porter, L. Owen, and R. Maingi have done these for DIII-D
- 2-D fluid plasma + kinetic neutrals (data-constrained base case)
 - L. Owen, M. Rensink, and R. Maingi have done these for DIII-D

NSTX

Propose to do UEDGE and maybe DEGAS-2 calculations with several candidate locations

- Perform data-constrained base case
 - Vary the recycling coefficient from base case (~0.98) to 0.1 or 0.2 over a
 - ~ 10cm wide region (1)
- Move the LLD farther from outer strike point (**2-5**)
- Determine if wider tray calculations desired
- <u>Need to determine which</u>
 <u>equilibrium to start from</u>

NSTX

Free Parameters in Plasma Simulation will be varied to

Propose to use #121238 or 121241 @ 0.3 sec as target shape for calculations

R. Maingi, ORNL

Liquid lithium divertor physics design discussion

Princeton, NJ March 9, 2007

Motivation and Technique

- Desire predictive simple model for effect of pumping on NSTX edge plasma
 - Provide means for comparing density control schemes, e.g. Lithium systems vs. in-vessel cryopumping
 - Should be benchmarked against other experiments
- Consider simple recycling model to evaluate examples of each scheme
 - DIII-D data from first cryopump in 1993
 - CDX-U data from liquid Lithium
- Goal: Predict range of reduction in edge/pedestal density in H-mode, and resulting transport and CD efficiency changes

Particle Balance and Recycling Model

 Consider core and SOL
particle content equations
$\frac{dN}{dt} = \eta_{NBI} S_{NBI} + \eta_{gas} S_{gas} - \frac{N}{\tau_p} + \eta_{core} R_p \Gamma_{\perp}^i$
$\frac{dN_i^{SOL}}{dt} + \frac{dN_0^{SOL}}{dt} = (1 - \eta_{NBI})S_{NBI} + (1 - \eta_{gas})S_{gas}$
$+\frac{N}{\tau_p} - (1 - R_p)\Gamma_{\perp}^i - R_p\Gamma_{\perp}^i(\eta_{pump} + \eta_{core})$
• Assume SOL neutral and
ion density in steady state
$\frac{dN}{dt} = (1 + \beta - \beta \eta_{NBI})\eta_{NBI}S_{NBI} +$
$(1+\beta-\beta\eta_{gas})\eta_{gas}S_{gas}-\frac{N(1-\beta)}{\tau_p}$, where
$\beta = \frac{R_p \eta_{core}}{\left[(1 - R_p) + R_p (\eta_{pump} + \eta_{core}) \right]_{\text{ORTED EXTROLED AND CONTRACT ON LARGE }}$

Simplified Particle Balance and Recycling Model

$$- R_p(\eta_{pump} + \eta_{core}) >> (1-R_p)$$

- $= \kappa_p(\eta_{pump} + \eta_{core}) + \gamma_{pump} + \eta_{core} + \rho_{pump}, \eta_{core} \text{ independent of time}$ $= \eta_{core} R_p \Gamma_{\perp}^i \quad \text{Particle balance equation becomes:}$ $= \frac{dN}{dt} = S_{NBI} + (1 + \beta(1 \eta_{gas}))\eta_{gas}S_{gas} \frac{N}{\tau_p^*}$

Let
$$S = S_{NBI} + (1 + \beta(1 - \eta_{gas}))\eta_{gas}S_{gas}$$

Solution:

$$N(t) = S\tau_p^{*,1} + S(\tau_p^{*,2} - \tau_p^{*,1})\exp(-(t/\tau_p^{*,2}))$$

in τ_p (L-H) and pumping ($\eta_{pump} > 0$

Limits of Particle Balance and Recycling Model

- Pump on: $\tau_p * / \tau_p \sim (\eta_{core} + \eta_{pump}) / \eta_{pump}$
- \Rightarrow n_o should go down by 2/3 w/pumping
- DIII-D specific data:
 - $R_p \sim 0.98$ for carbon (reference?)
 - $\eta_{core} \sim 0.1$ (Rensink, PoF B 1993)
 - $\eta_{pump} \sim 0.1$ (Maingi, NF 1999)

Achievable edge density reduction depends on initial recycling state

Proposed Method to Relate 0-D Pump Probability to Divertor Plasma and Lithium tray parameters

Backup

NSTX D_{α} Peaked on Inboard Side, but Particle Flux Peaked on Outboard side because Inner Divertor is Usually Partially Detached

(() NSTX

Comparison of Unpumped and Pumped DIII-D Discharges

Particle Balance and Recycling Model - DIII-D cryopump

Simple Model Can Reproduce DIII-D Data

- τ_p/τ_E is effectively an input, but within range of previous studies (2-4). Note that τ_p is estimate of core confinement.
- τ_p^* increases with time, so that apparent density roll-off faster than simple e-folding with initial τ_p^*
- Diminishing returns as n_e goes down since SOL shielding efficiency goes down, and core fueling fraction increases relative to pump fraction
- Edge n_e goes down more than core n_e profile more peaked
- Model can be extrapolated for multiple pumps

