XP 709: SOL width scaling (Feb. 22, 2007)

- Goal: measure the I_p and B_t dependence of the SOL n_e , T_e , particle and heat flux widths at the outer midplane
 - The first three quantities are measured by the reciprocating probe (<u>Boedo, Ahn</u>), and the latter one is obtained from the divertor IR camera (<u>Maingi</u>) data after field line mapping

➢ Also obtain SOL turbulence data (<u>Maqueda</u>)

- Ultimate aim: devise a physics-based model to extrapolate the measured SOL widths for NHTX, to better predict the heat and particle flux footprints for PFC design
- Requirements: 200ms quasi-steady window free of large excursions for optimum reciprocating probe data
- Result: obtained good IR camera data (<u>analysis in progress</u>), but nearly all discharges only had at most a 100ms steady phase, plagued by a reconnection that varied in time
 - Probe plunged into the scrape-off layer in many discharges, but a reconnection or large event often hit the probe, causing arcing -> <u>analysis in progress</u>
- Will require more run time to complete
- General comment: steady PF2L LSN discharge not yet obtained, hopefully will improve with machine conditions over next few weeks

XP 709: SOL width scaling shot plan (Feb. 22, 2007)

- Reproduce baseline PF2L LSN #119083 or newer version from 2007 with 1100-1200 Torr on CS to suppress large ELMs, B_t=0.4 T, and P_{NBI}=3 MW. Use source C at reduced voltage to get 3 MW. If discharge does not have a minimum 200ms quasi-steady period, consider either increasing B_t to 0.44 T or κ to 2.2 for higher q₉₅. (5 shots)
- Repeat above with $P_{NBI}=5 \text{ MW} + \text{src B}$. (2 shots)
- Perform I_p scan at approximately fixed q95 (at fixed $I_p/B_t=2$, or 1.818 if $B_t=0.44$ T is used above) and at $P_{NBI}=3$ MW, 5 MW (15 shots)

I. 1.1 MA, 0.55 T (1.0 MA, 0.55 T if lower I_p/B_t) II. 1.0 MA, 0.5 T (0.9 MA, 0.495 T if lower I_p/B_t) III. 0.9 MA, 0.45 T (1.1 MA, 0.55 T to test I_p sealing) IV. 0.7 MA, 0.35 T (0.7 MA, 0.385 T if lower I_p/B_t) V. 0.8 MA, 0.4 T (0.8 MA, 0.44 T if lower I_p/B_t)

Time permitting: Perform B_t scan at I_p=0.8 MA, P_{NBI}=5 MW (6 shots)

 0.8 MA, 0.55 T
 0.8 MA, 0.35 T
 0.8 MA, 0.55 T

Error! Reference source not found.

