Divertor heat flux reduction and detachment in CTF-relevant (highly shaped) plasmas

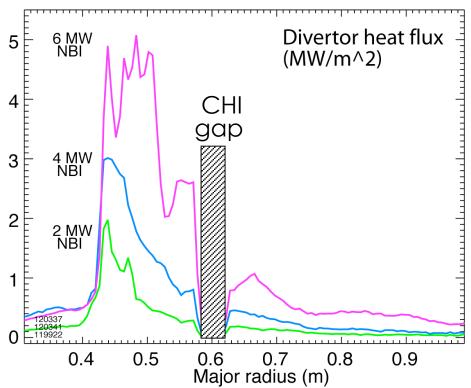
V. A. Soukhanovskii

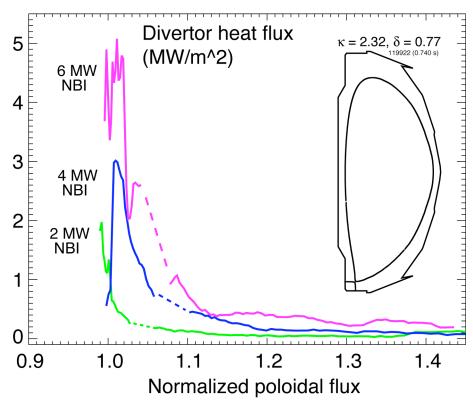
Acknowledgements:

D. A. Gates, R. Maingi,

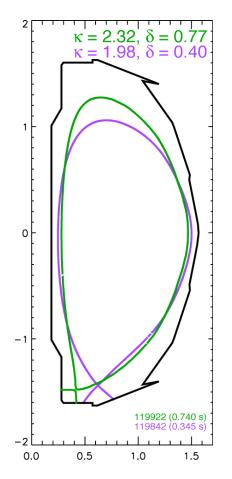
J. Menard, A. L. Roquemore

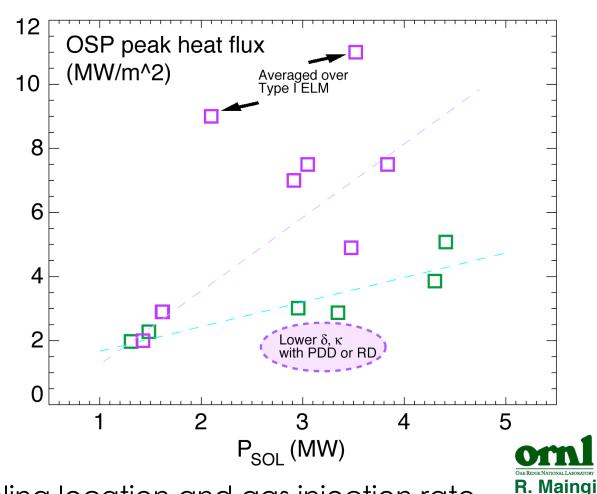
NSTX Physics Meeting 26 February 2007 Princeton, NJ


NSTX FY08 milestone, ST development path and divertor physics studies motivate the XP


- NSTX Edge Physics Milestone FY2008
 "Study variation and control of SOL heat flux..."
- NSTX high κ , δ LSN plasmas (developed in J. Menard's XP) show potential for future ST-CTF:
 - high β_t , β_n
 - long pulse, high H89P scaling factor
 - high bootstrap and non-inductive current fractions
 - small or no ELMs
- Test radiative and dissipative divertor techniques for divertor peak heat flux reduction in highly shaped high performance plasmas
- For elongated plasmas upper divertor properties may be important -Study upper divertor particle and heat fluxes (new FY07)

Divertor heat flux reduction scenario in highly shaped plasmas may be different


- High-performance long-pulse LSN H-mode plasmas (J. Menard)
- Poloidal flux expansion at OSP 20-25
- ISP on vertical target (detached), OSP on horizontal target
- OSP detachment threshold to be investigated (geometry)
- Divertor gas injectors in PFR and OSP region



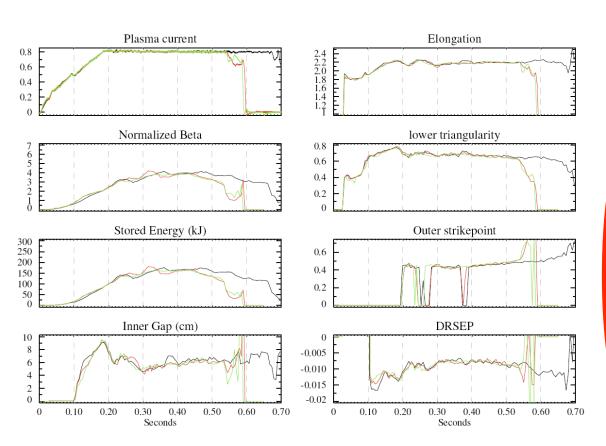
More favorable scaling of peak OSP heat flux with input power is obtained in higher κ , δ plasmas

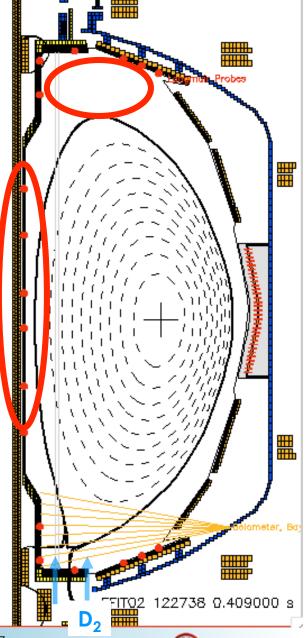
- Scaling depends on fueling location and gas injection rate
- P_{SOL} is determined from measured and TRANSP-calcualted quantities as

$$P_{SOL} = P_{NBI} + P_{OH} - dW_{MHD}/dt - P_{rad}^{core} - P_{fast\ ion}^{loss}$$

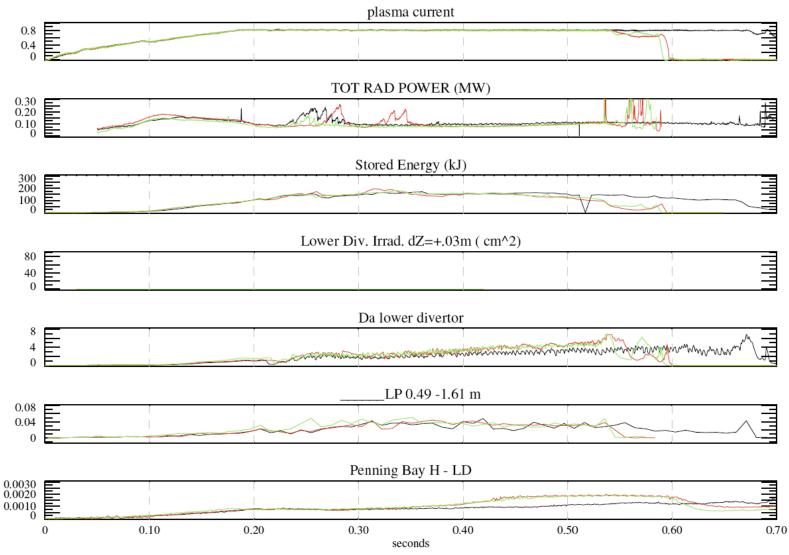
Run plan - overview

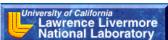
- Divertor D₂ puffing (~ 0.5-0.7 day)
 - Target plasma 4-6 MW H-mode LSN plasma, 0.8 MA, 4.5 kG, δ ~0.7-0.8, κ ~2.1-2.3
 - Try 200-400 Torr I / s from LDGIS and 100-160 Torr I /s from Branch 5 injectors
- (Optional) Extrinsic impurity puffing (CD_4 or N_2) ($\sim 0.2-0.5$ day)
- Measure divertor heat flux profiles, D_{α} , D_{γ} , C III divertor and midplane profiles, rad. power, particle fluxes, edge and divertor $T_{\rm e}$, $n_{\rm e}$ for comparison with models
- If GPI diagnostic and fast cameras are available, test blob radial transport theory
 - Proposed at NSTX RF FY 07 by J. Myra (Lodestar), also discussed by R. Maqueda (Nova Photonics), J. Boedo (UCSD)
 - Blob rad. velocity increases with resistivity (disconnection from sheath)
 - Disconnection is achieved through X-point cooling or OSP detachment
 - Use UCSD probe, GPI and fast cameras during divertor gas injections


Summary of 1/2 run day 3 March 2007

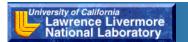

- Required shape and plasma quality was obtained using rtEFIT control
- Obtained good reference 2 NBI and 3 NBI source H-mode shots
- Obtained radiative divertor with B5 gas injection with clearly reduced divertor heat flux in 2 NBI source shots
 - Camera, Langmuir probe and spectroscopy data collected
 - Peak heat flux reduced by 30-40 % (preliminary analysis)
 - Confinement degraded by ~ 10 %, retained H-mode
- Data in 3 NBI source plasmas is being analyzed

rtEFIT control helped achieve and maintain critical plasma shape parameters with high accuracy

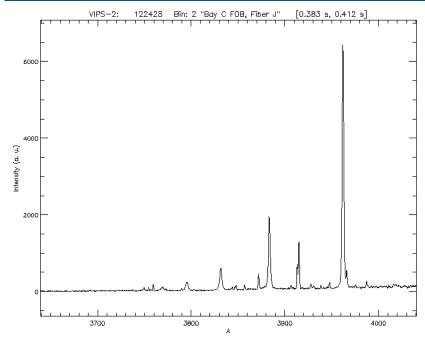




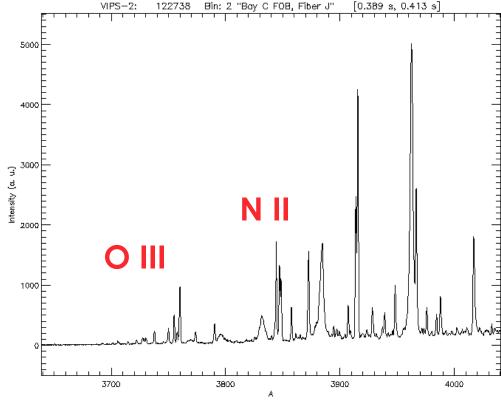
Radiative divertor conditions were established without significant confinement degradation



Future directions and plans


Analysis:

- IR heat flux data
- D α , D γ , C II, CIII divertor profiles for signs of recombination and detachment
- Divertor Langmuir probe I_{sat}, T_e, n_e
- VIPS divertor spectra T_e , n_e , signs of recombination
- Obtain data in 0.8 MA 3 NBI source plasmas
- Obtain data in 1.0-1.2 MA 3 NBI source plasmas highest divertor heat flux
- Try impurity (N₂ or CD₄) gas puffing



VIPS spectra indicate traces of oxygen and nitrogen in plasma

20 February 2007

3 March 2007

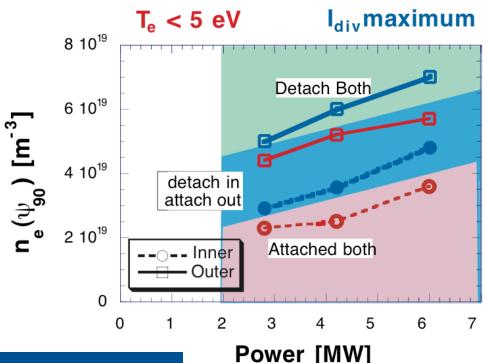
Back-up slides

Divertor peak heat flux reduced by 2-5 with radiative/dissipative divertor in lower κ , δ plasmas

- Completed low δ,κ part in 2006
- Multi-institutional experiment LLNL, ORNL, PPPL, U Washington, UCSD
- C. J. Lasnier (LLNL staff at DIII-D) participated in 2005 experiment
- NSTX results to date (4 MW NBI lower δ , κ H-mode plasma)
 - \square OSP does not detach at high densities ($n_e \sim n_G$) as a result of short L and open divertor geometry. ISP detaches at low n_e , P_{in}
 - ☑ Midplane neon puffing produces radiative mantle
 - \square Obtained OSP partial detachment with high-rate D_2 puffing in ISP region
 - ✓ Peak OSP heat flux reduced by 2-5
 - \checkmark Core confinement degrades within 2-5 $\tau_{\scriptscriptstyle F}$
 - ✓ H-L transition within 20-50 ms (too much gas)
 - ✓ X-point MARFE forms quickly
 - ☑ Obtained radiative divertor with moderate D₂ puffing in PFR or ISP region
 - ✓ Peak OSP heat flux reduced by 2-5
 - ✓ Good core confinement (1.6 H89P), H-mode
 - ✓ Outer SOL in high recycling regime
 - ✓ X-point MARFE eventually forms as well
 - ✓ Promising scenario for future experiment

Publications and collaborations

- Publications
 - Oral talk in NSTX session at APS 2005
 - PSI-17 poster
 - Two JNM papers (2005, 2007)
 - IAEA FEC 2006 individual poster and paper
 - Paper to be submitted to NF (01/2007)


- Collaboration potential
 - Discussed possible collaboration with DIII-D (through LLNL program)
 - Discussed collaboration with J. Myra (Lodestar)
 - Possible collaboration with MAST

UEDGE modeling guided detachment experiments

- Model divertor conditions vs P_{in}, n_{edge} with UEDGE to guide experiment
- Generic low κ,δ LSN equilibrium used
- Diffusive transport model
- Impurities (carbon) included
- Outer midplane n_e , T_e profiles matched, D_α and IRTV not matched

G. Porter, N. Wolf

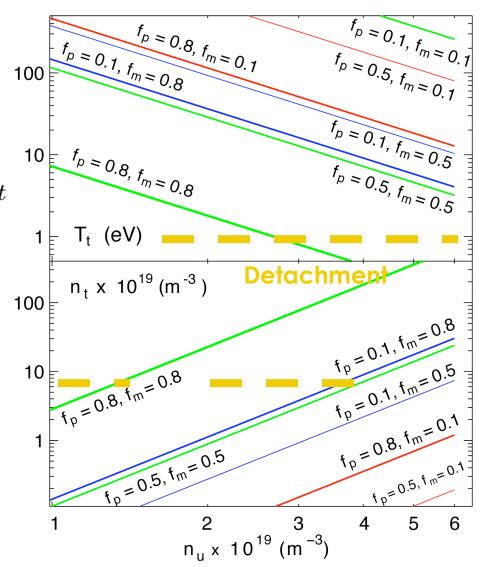
Parallel momentum and power balance:

$$\frac{d}{ds}(m_i n v^2 + p_i + p_e) = -m_i(v_i - v_n)S_{i-n} + m_i v S_R$$

$$\frac{d}{ds}((-\kappa T_e^{5/2} \frac{dT_e}{ds}) + n v_{||}(\frac{5}{2}(T_i + T_e) + \frac{1}{2}m_i v_{||}^2 + I_0)) = S_E$$

Large momentum and power losses are needed for divertor detachment according to 2PM-L

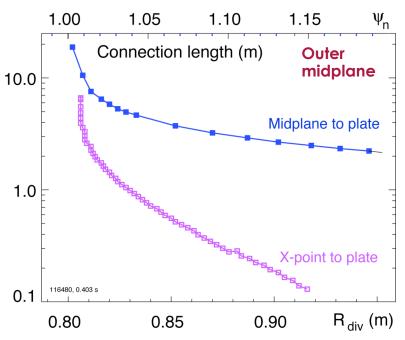
- Two point model with losses
- f_p , f_m scanned, f_{cond} =0.9
- n_{ν} , q_{\parallel} , L_c from experiment

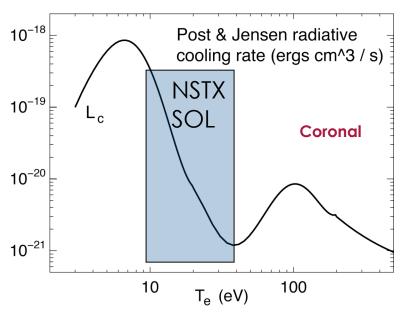

$$(1 - f_{power}) q_{||} = q_t = \gamma T_t n_t c_{St}$$

$$2 n_t T_t = f_{mom} n_u T_u$$

$$T_u^{7/2} = T_t^{7/2} + \frac{7}{2} \frac{f_{cond} q_{||} L_c}{\kappa_{0e}}$$

$$\Gamma_t \sim \frac{f_{mom}^2 f_{cond}^{4/7}}{1 - f_{power}}$$


$$L_c = 20 \text{ m}, q_{\parallel} = 25-30 \text{ MW/m}^2$$



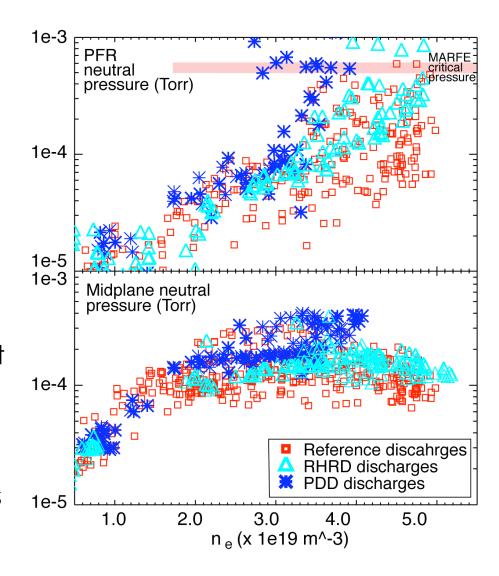
Why is it difficult to obtain OSP detachment?

- Connection length decreases to very short values within radial distance of 1-3 cm (both midplane to plate and X-point to plate)
- SOL temperature 10-40 eV (rather low)
- Weak dT_e/ds_{II} in high-recycling outer SOL
- Carbon cooling rate max at $T_{\rm e}$ < 10 eV

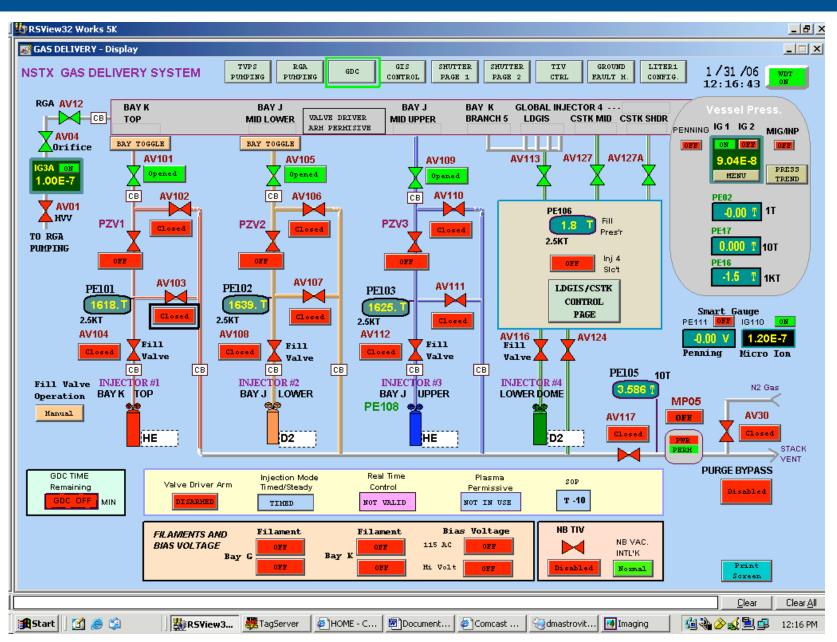
Recombination time:

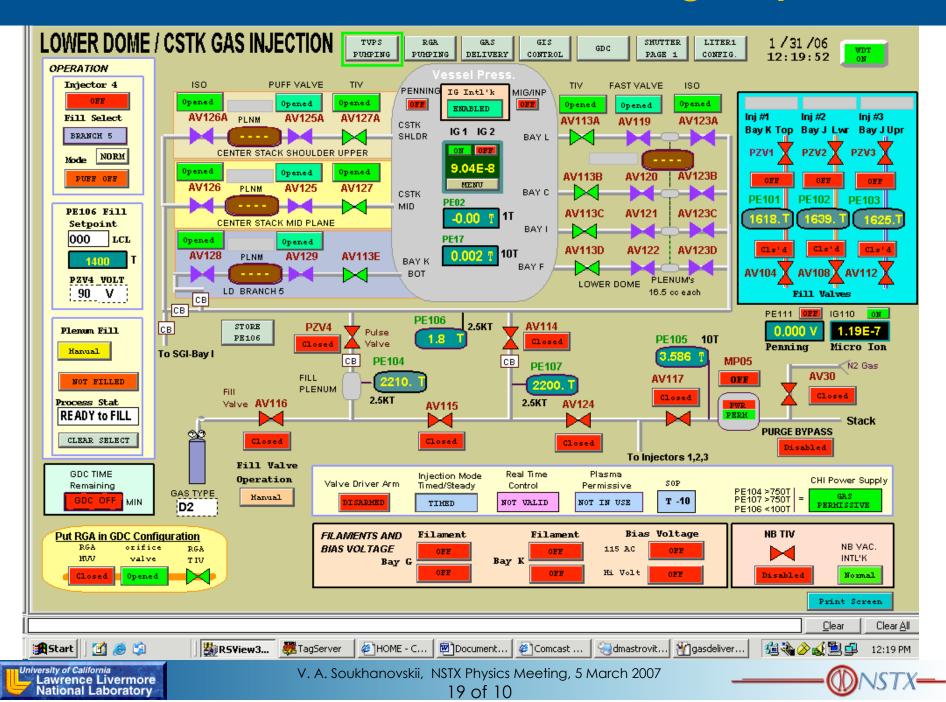
 $\tau_{\rm rec}$ = 1./($n_{\rm e}$ $R_{\rm rec}$) ~ 1–10 ms at $T_{\rm e}$ =1.3 eV lon divertor residence time:

$$\tau_{ion} = L_d/v_{ion} \sim 0.8 \text{ ms (with } v_{ion} \sim 10^4 \text{ m/s)}$$


- Open divertor geometry high detachment threshold is expected
- Neutral compression ratio is 5-10 (low)

Observed midplane and PFR pressure trends are due to open divertor geometry


- In reference discharges, n_{υ} independent of P_{mp} , but a strong linear function of P_{PFR}
- X-point MARFE critical PFR pressure is 0.5-0.6 mTorr
- Reference discharges never reach
 PFR critical pressure
- PDD discharges reach MARFE onset PFR pressure faster than RD discharges
- P_{mp} similar in ref. and RD discharges
- P_{mp} higher in PDD discharges (stronger gas puffing)


NSTX Gas system

NSTX Lower Dome and Branch 5 gas system

