Google: [Leonid Zakharov] → http://w3.pppl.gov/~zakharov

Operational and design space of LLD, Li/Mo Capillary Porous System (CPS) and Li/SS/Cu plate

Leonid E. Zakharov

Princeton Plasma Physics Laboratory, MS-27 P.O. Box 451, Princeton NJ 08543-0451

NSTX Meeting,

May 29, 2007, PPPL, Princeton NJ

This work is supported by US DoE contract No. DE-AC020-76-CHO-3073.

Contents

1	LLD Heating model						
	1.1	Range of NBI power P_{NBI}	4				
	1.2	Hydrogen retention model	6				
	1.3	Evaporation and retention	7				
2	Ope	Operational space for Mo based CPS					
	2.1	10 mm Li/Mo CPS	9				
	2.2	Layer of Li/Mo CPS on the top of Mo	10				
3	Li/SS/Cu plate						
	3.1	Comparison of Li/SS/Cu plate with Li/Mo-based CPS	12				
	3.2	Layer of Li/Mo CPS on the top of SS/Cu sandwich	13				
4	Summary. Interim Li/SS/Cu plate is crucial for NSTX						

Both Liquid Lithium (LiLi) and Li/Mo CPS were considered

Heat flux profile from the SOL

$$Q_{SOL} = Q_0 \exp\left[-\left(rac{x-x_0}{d(x)}
ight)^2
ight], \quad egin{cases} d=d_{out}, & x \geq x_0 \ d=d_{in}, & x < x_0 \end{cases}$$
 (1.1)

Characteristic scale lengths, mm

d_{in}	d_{out}	Δ_{LiLi}	$\Delta_{Li/Mo}$	Δ_{SS}	$\Delta_{Mo,Co}$	Li/Mo CPS
20,30	60,90	0.5, 1,2,3	1,2,4,8,10	.1	10	4/0, 3/1, 2/2, 1/3, 0/4

Lowest NBI energy (20-30 keV) is the most appropriate for the LiWall regime in NSTX

The Reference Transport Model (RTM)

$$\chi_e = \chi_i = D_{i,e} = \chi_i^{neo} \tag{1.2}$$

predicts $au_E \simeq 0.3~{
m sec}$ for 0.6 MW NBI at 25 keV.

Expected $au_E \simeq 0.1 - 0.15~{
m sec}$

The expected working range of $P_{NBI} \simeq 0.75$ -1.5 MW.

The range of P_{NBI} considered: 0-2.5 MW deposited to LLD.

RTM seems to be consistent with CDX-U results

Initial temperature is very important for limits by evaporation

Initial temperatures:

- 100°C, solid lithium, although heat losses for melting of Li have been neglected (!) (additional reserve of $\Delta T \simeq 100^{\circ}C$ for the Li/SS/Cu plate).
- 200°C, liquid lithium.

Surface area 0.7 m² contains 10^{19} Li particles/monolayer, or $3 \cdot 10^{26}$ Li particles/mm of thickness.

1 working mm of Li is sufficient for pumping 10^4 of $3 \cdot 10^{21}$ D, more than sufficient for 2 weeks of NSTX operation

Lithium retains Hydrogen in a limited window of temperatures

McCracken retention curves

Short term retention curve used in calculations

Probably short lasting retention allows temperatures above 350°C (R.Majeski)

Short term retention curve was taken arbitrarily Requires special technology studies

3-D Cbebm code (written for Marangoni effect) is used to simulate heating of Li surface

Evaporation limit was set to $10^{21} 1/sec$

The role of reduction in retention after 350^o is unknown

2 Operational space for Mo based CPS

Operational space is limited by evaporation limit

Operational space is situated between the axis and the curve for each case.

100° of initial ΔT is equivalent to 3 cm of d_{SOL}

Regarding the thermal regime, CPS has advantage over LiLi

 $\chi_{Li/Mo} = C_{Li}\chi_{Li} + (1 - C_{Li})\chi_{Mo}$ requires technology test

50/50 Li/Mo CPS may have the best characteristics

The plate 0.1-1 mm of Li on 0.1/10 SS/Cu provides the operational space for LiWall regime in NSTX

The heat flux profile in the SOL is a crucial unknown

PPPPL PRINCE TON PLASMA PHYSICS LABORATORY

1/0.1/10 mm Li/SS/Cu plate outperforms 10 mm Li/Mo CPS

The plate also has fewer technology unknowns

1 mm Li/Mo CPS on 0.1/10 mm SS/Cu plate is the best

1 mm Li/Mo CPS on 0.1/10 mm SS/Cu is similar to T-11M,FTU

LLD design faces many unknowns from plasma physics and technology sides

Leaving aside plasma physics unknowns, which are important for both Li/SS/Cu plate and LLD, the plate is more capable than Mo-based CPS:

- 1. larger design (LiLi or CPS) and operational space
- 2. well-known physical properties
- 3. possibility of solid/liquid back and forth transitions
- 4. simpler overall maintenance
- 5. no need of additional heating (cooling might be necessary ?)

Everything is simplified because of the plate limited life expectancy.

1/0.1/10 mm Li/SS/Cu plate outperforms the Mo-based CPS in all aspects

4 Summary. Interim Li/SS/Cu plate is crucial for NSTX (cont.)

The Li/SS/Cu plate is sufficient for the first LiWall regimes on NSTX

Installation of Li/SS/Cu plate will be the turning point for PPPL toward relevance to the energy R&D, lost at present

