Supported by

Neutral Particle Analyzer Vertical Scanning Measurements of MHD-induced Energetic Ion Redistribution or Loss in NSTX

> S. S. Medley, R. Andre, R. E. Bell, D. S. Darrow, C. W. Domier, E. D. Fredrickson, N. N. Gorelenkov, S. M. Kaye, B. P. LeBlanc, K. C. Lee, F. M. Levinton, N. C. Luhmann, Jr., J. E. Menard, H. Park, D. Stutman, A. L. Roquemore, K. Tritz, H. Yuh

Report on XP707 NSTX Physics Meeting June 4, 2007

Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** NYU ORNL **PPPL PSI SNL UC Davis UC** Irvine UCLA UCSD U Maryland **U New Mexico U** Rochester **U** Washington **U Wisconsin** Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo JAERI **loffe Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching U Quebec

Office of

Science

NSTX

• Dominance of charge exchange emissivity by beam neutrals results in both field pitch and spatial localization of NPA measurements.

Vertical Scan Discharge Characteristics: 122631

(D) NSTX

- Ip = 1 MA, B_T = 4.5 kG H-mode (t_{flattop} ~ 0.8 s) with A, B, C @ 90 keV and P_{NB} = 6 MW.
- Shot range: 122626 122645 (15 good discharges).
- Stable outer gap ~ 10 cm early in discharge and $n_e(r)$ 'flattop' after t ~ 0.5 s.
- Wide range of reproducible *AE and MHD activity.
- Strong depletion of the NPA energetic ion spectrum primarily above E/2.

Collapse of v_{Φ} at t ~ 0.55 s Triggers Changes in Plasma Profiles and MHD Activity

• $v_{\Phi_{i}} Z_{eff}$, n_{e} and T_{e} were reproducible to within ~ 10% during the scan.

- Maximum $v_{\Phi} \sim 250 \text{ kms}^{-1}$ at t ~ 0.5 s drops to $v_{\Phi} \sim 150 \text{ kms}^{-1}$ at t $\sim 0.6 \text{ s}$.
- Modest $Z_{eff} \sim 1.2$ at t ~ 0.2 s rises to $Z_{eff} \sim 1.6 \pm 0.1$ at t ~ 0.6 s.
- $n_e(0) \sim 6.5 \times 10^{13} \text{ cm}^{-3}$ at t ~ 0.55 s transitions to $n_e(0) \sim 8.5 \times 10^{13} \text{ cm}^{-3}$ at t ~ 0.7 s.

• $T_e(0) \sim 0.2$ keV at t ~ 0.2 s increases to $T_e(0) \sim 0.7 \pm 0.1$ keV at t ~ 0.7 s.

NSTX

Low and High Frequency MHD Activity was Reproducible

Initially Monotonic NPA Vertical Scan Profile is Flattened by MHD-induced Fast Ion Redistribution

• Later in the discharge, the vertical scan profiles remained flat (or became hollow in the core) and the magnitude of the efflux slowly diminished.

Detail of NPA Vertical Scan Energetic Ion Distributions

• Energetic ion distributions are show for selected radii during the vertical scan.

TRANSP Anomalous Fast Ion Diffusion (AFID) Can Simultaneously Match $S_n(t)$, $S_{npa}(t)$ and $f_{npa}(E)$

• The core-weighted AFID model in TRANSP was optimized to match measured and calculated neutron yield throughout the discharge.

• For t > 0.5 s, good matching of the NPA efflux evolution and energy spectra are obtained.

• Outboard-weighted AFID model cannot match neutron and NPA measurements.

• Inadequate treatment (volume averaged rather than NB localized) of beam halo neutrals in TRANSP remains an unresolved issue.

VSTX

TRANSP Simulation of a NPA Vertical Scan with AFID Shows Outward Redistribution of Core Fast Ions

Use of NBICD Redistribution Enables Matching of Calculated Toroidal Current Profiles with MSE Measurements

• An equilibrium code calculates the inductive (orange) and bootstrap (red) current profile components.

• The neutral beam injection current drive (NBICD, blue) profile is calculated in TRANSP. Summation yields the calculated total current density (black).

• In panel (a), the calculated total (black) exceeds the MSE-reconstructed value (gray) by 20-30% when NBICD redistribution is neglected.

• In panel (b), including core AFID of ~ 70 m²/s in the TRANSP-calculated NBICD component yields good agreement between the calculated total and MSE-constrained reconstruction current profiles.

- Electron heating is reduced by ~ 10% and ion heating is reduced by ~ 25%.
- Fast ion orbit loss approximately doubles, increasing by ~ 0.25 MW and reaching ~ 10% of the injected beam power.

 Particle heating and hence conduction losses are reduced when fast ion diffusion is applied while Q_{ie} is relatively unaffected.

• All diffusivities are reduced (except for χ_i^{NC} that ignores fast ions) when fast ion diffusion is applied. χ_{Φ} decreases primarily in the region of applied AFID.

Effect of Anomalous Fast Ion Diffusion on Energy Confinement and Toroidal Beta

0.50 15 (a) (b) 0.40 10 0.30 **τ**E (s) βτ(%) 0.20 5 0.01 122631M09 - Fast Ion Diffusion Off 122631M09 - Fast Ion Diffusion Off 122631M11- Fast Ion Diffusion On 0 122631M11- Fast Ion Diffusion On 0 0 0 Г 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Time (s) Time (s)

• Anomalous fast ion diffusion causes modest reduction in τ_{E} and β_{T} .

NSTX

Summary

- NPA vertical scanning provides a direct measurement of MHDinduced energetic ion redistribution.
- The NPA vertical scan presented herein views passing energetic ions having a narrow range in field pitch: $v_{\parallel}/v \sim 0.78 \pm 0.6$.
- MHD-induced energetic ion redistribution modeling using anomalous fast ion diffusion reduces the TRANSP-calculated neutron yield, NPA fast ion efflux and core-driven NBICD.
- sFLIP was not available during the vertical scan. A re-run of 122631 is desirable to complete the data set.
- First observation of MHD-induced energetic ion redistribution in He L-mode plasmas was made during a vertical scan in XP-705.

VSTX