

XP 708: Divertor heat flux reduction and detachment in highly shaped plasmas

V. A. Soukhanovskii

Acknowledgments:

- R. Maingi, D. Gates, J. E. Menard, R. Raman,
- C. E. Bush, R. E. Bell, R. Kaita, H. W. Kugel,
- C. J. Lasnier, B. P. LeBlanc, S. F. Paul,
- A. L. Roquemore

NSTX Physics Meeting 25 June 2007 Princeton, NJ

Summary of 2 hr run on 21st June 2007

- Used 1 MA 6 MW fiducial with rtEFIT-controlled DRSEP set to -1.2 cm
- Since divertor q_{peak} scales with P_{SOL} (P_{NBI}) and I_p, obtained data in H-mode shots
 - \checkmark 1.0 MA 4 MW NBI reference and w/divertor D₂ puffing
 - \checkmark 1.0 MA 6 MW NBI reference and w/divertor D₂ puffing
 - \checkmark 1.2 MA 6 MW NBI w/divertor D₂ puffing
- It appears that partial OSP detachment was obtained in all three cases
 - \checkmark Divertor peak heat flux clearly reduced at OSP, profile broadened
 - ✓ Radiated power increased x 2 in outer leg (P_{loss})
 - ✓ Lower divertor neutral pressure increased (momentum loss)
 - Clear signs of volume recombination, low T_e and high n_e from Balmer highn spectra
 - ✓ Core confinement and β practically unaffected!
 - ✓ Core radiated power reduced (metal influx reduced)

Proper plasma and diagnostic configurations were essential for XP success

- rtEFIT control enabled critical parameter control (DRSEP, RVSOUT, GAP)
- Multi-diagnostic configuration was necessary to measure core and SOL/divertor parameters simultaneously

In PDD regime divertor peak heat flux reduced by x 3-4, heat flux profile broadened

- Shown are divertor heat flux profiles for 1 MA, 4 MW NBI plasmas
- Peak q reduces over ~ 10 cm (ψ_n ~ 0.01)
- Further out of PDD region, SOL remains in high-recy regime

PDD regime is suggested by many diagnostics

Volume recombination, high n_e and low T_e at OSP are evident from spectra observed during PDD

Back-up slides

V. A. Soukhanovskii, NSTX Physics Meeting, 25 June 2007 7 of 6

NSTX FY08 milestone, ST development path and divertor physics studies motivate the XP

- NSTX Edge Physics Milestone FY2008
 "Study variation and control of SOL heat flux..."
- NSTX high κ , δ LSN plasmas (developed in J. Menard's XP) show potential for future ST-CTF:
 - high β_t , β_n
 - long pulse, high H89P scaling factor
 - high bootstrap and non-inductive current fractions
 - small or no ELMs
- Test radiative and dissipative divertor techniques for divertor peak heat flux reduction in highly shaped high performance plasmas
- For elongated plasmas upper divertor properties may be important -Study upper divertor particle and heat fluxes (new FY07)

Divertor heat flux reduction scenario in highly shaped plasmas may be different

- High-performance long-pulse LSN H-mode plasmas (J. Menard)
- Poloidal flux expansion at OSP 20-25

versity of California Lawrence Livermore National Laboratory

- ISP on vertical target (detached), OSP on horizontal target
- OSP detachment threshold to be investigated (geometry)
- Divertor gas injectors in PFR and OSP region

More favorable scaling of peak OSP heat flux with input power is obtained in higher κ, δ plasmas

- Scaling depends on fueling location and gas injection rate
- *P*_{SOL} is determined from measured and TRANSP-calcualted quantities as

 $P_{SOL} = P_{NBI} + P_{OH} - dW_{MHD}/dt - P_{rad}^{core} - P_{fast \ ion}^{loss}$

Publications and collaborations

- Publications
 - Oral talk in NSTX session at APS 2005
 - PSI-17 poster
 - Two JNM papers (2005, 2007)
 - IAEA FEC 2006 individual poster and paper
 - Paper to be submitted to NF (01/2007)
- Collaboration potential
 - Discussed possible collaboration with DIII-D (through LLNL program)
 - Discussed collaboration with J. Myra (Lodestar)
 - Possible collaboration with MAST

UEDGE modeling guided detachment experiments

- Model divertor conditions vs P_{in}, n_{edge} with UEDGE to guide experiment
- Generic low κ,δ LSN equilibrium used
- Diffusive transport model
- Impurities (carbon) included
- Outer midplane n_e , T_e profiles matched, D_{α} and IRTV not matched

Parallel momentum and power balance:

$$\frac{d}{ds}(m_i nv^2 + p_i + p_e) = -m_i(v_i - v_n)S_{i-n} + m_i vS_R$$
$$\frac{d}{ds}((-\kappa T_e^{5/2}\frac{dT_e}{ds}) + nv_{||}(\frac{5}{2}(T_i + T_e) + \frac{1}{2}m_i v_{||}^2 + I_0)) = S_E$$

V. A. Soukhanovskii, NSTX Physics Meeting, 25 June 2007

12 of 6

Large momentum and power losses are needed for divertor detachment according to 2PM-L

Lawrence Livermore National Laboratory

NSTX Lower Dome and Branch 5 gas system

