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Numerical design study to optimize advanced stability of
KSTAR merging present experimental results & machine design

• Motivation 
 Design optimal global MHD stabilization system for KSTAR

with application to future burning plasma devices 

• Outline 
 Free boundary equilibrium calculations 
 Ideal stability operational space for experimental profiles
 RWM stability and VALEN-3D modeling
 Advanced feedback control algorithm and performance
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Parameters:
• R 1.8m
• a 0.5 m
• Bto 3.5 T
• τpulse 300 s
• Ip 2.0 MA
• Magnet: 

 TF : Nb3Sn,
 PF : NbTi

Korea Superconducting Tokamak Advanced Research
will study steady-state advanced tokamak operation & technology
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KSTAR configuration used in EFIT calculations

• EFIT industry-standard tool
 Free-boundary equilibria

 Expandable range of
equilibria

• Data from KSTAR design
drawings

• Passive stabilizers/vacuum
vessel included.
 Important for start up studies
 Reconstructions during

events that change edge
current (e.g. ELMs)
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Equilibrium variations produced to scan (li,βn)
• Boundary shape

 Free-boundary equilibria with
high shaping κ~2,δ~0.8

 Shaping coil currents
constrained to machine limits

• Pressure profile
 Generic “L-mode”, edge p’=0
 H-mode, modeled from DIII-D

• q profile
 Monotonic to mild shear

reversal with
q0>1 and (q0-qmin)<1

• Variations in (li,βn) produced
 0.5 ≤ li ≤1.2; 0.5 ≤ βn ≤8.0
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Ideal stability(DCON): conducting wall allows significant
passive stabilization for n=1 H-mode pressure profile

• “inner” wall used
• Wall-Stabilized βn is a factor

of two greater then for
equilibrium without wall at
li ~ 0.7

• Wall-Stabilized βn from DCON agrees
with VALEN-3D value

• “outer” wall used
• Wall-Stabilized βn > 6.5 (larger

than the result using “inner” wall
 at li ~ 0.7)

• Optimistic, but does not agree with
VALEN-3D. “Inner” wall is more realistic
and should be used in DCON analysis
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L-mode pressure profile has large
n=1 stabilized region

• “inner” wall used
• Wall-Stabilized region

at lowest li (Unfavorable
for n=0 stabilization)

• Possible difficulty to
access with L-mode confinement.

• n=2 stability has higher no-wall
& lower with-wall limits than n=1
for H-mode and L-mode
pressure profile
 Internal n=2 modes were

observed in NSTX during
n=1 active RWM
stabilization.
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Conducting hardware, IVCC set up in VALEN-3D*

based on engineering drawings
• Conducting structures

modeled
 Vacuum vessel with

actual port structure
 Center stack back-

plates
 Inner and outer

divertor back-plates
 Passive stabilizer
 PS Current bridge

• Stabilization currents
dominant in PS
 40 times less

resistive than nearby
conductors.

n=1 RWM passive stabilization currents

*Bialek J. et al 2001 Phys. Plasmas 8 2170
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VALEN 3-D code reproduces n=1 DCON βn
ideal wall limit

• Important cross-check
VALEN-3D/DCON calibration

• Equilibrium βn scan with li=0.7
H-mode pressure profile

• DCON n=1 βn limits:
  βn

no-wall = 2.6
 βn

wall = 4.8

• VALEN-3D n = 1 βn
wall

 4.77 < βn
wall  < 5.0

 Range generated by various
RWM eigenfunctions from
equilibria near
βn = 5.



                                  NSTX physics Mtg.  2008 O. Katsuro-Hopkins 9

IVCC allows active n=1 RWM stabilization
near ideal wall.

• Active n=1 RWM
stabilization capability with

 Optimal ability for mode
stabilization

 Mid-plane IVCC used

• Equilibrium βn scan with
li=0.7 H-mode pressure
profile

• Computed βn limits
  βn

no-wall = 2.56
  βn

wall = 4.76

€ 

Cβ =
βn −βn

no wall

βn
wall −βn

no wall > 98%
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Noise on RWM sensors sets control system power
• Gaussian white noise

 ~1.5Gauss RMS, based on noise in
DIII-D RWM Bp sensors

 Minimum estimate of control power
consumption

• Perfect response to RWM
• No other coherent modes

• Experimental sensor input
 NSTX Bp sensor during RWM active

stabilization
 Maximum estimate of control system

power consumption
• DC offset from resonant field

amplification; stray field from passive
plate currents

• The ΔB/B0 larger in ST than at higher
apsect ratio
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Power estimates bracket needs for KSTAR RWM control

Unloaded IVCC
L=10µH
R=0.86mOhm
L/R=12.8ms

FAST IVCC circuit
L=13µH
R=13.2mOhm
L/R=1.0ms

Proportional gain
controller

White noise (1.6-2.0G RMS)

(RMS values)

NSTX 120047 ΔBp sensors

(RMS values)
Cβ IIVCC(A) VIVCC(V) PIVCC(W) IIVCC(A) VIVCC(V) PIVCC(W)
80% 30 1.6 45 362 0.7 253
95% 41 2.0 82 430 0.8 307

80% 20.9 1.56 30.0 1.9e3 24.9 62e3
95% 28.3 1.78 50.6 9e3 119 1.8e6
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Power estimates bracket needs for KSTAR RWM control

• Initial results using advanced Linear Quadratic Gaussian (LQG) controller yield
factor of 2 power reduction for white noise.

• LQG controller consists of two steps:
 Balanced Truncation of VALEN state-space for fixed βn
 Optimal controller and observer design based on the reduced order system

Unloaded IVCC
L=10µH
R=0.86mOhm
L/R=12.8ms

FAST IVCC circuit
L=13µH
R=13.2mOhm
L/R=1.0ms

LQG
controller

Proportional gain
controller

White noise (1.6-2.0G RMS)

(RMS values)

NSTX 120047 ΔBp sensors

(RMS values)
Cβ IIVCC(A) VIVCC(V) PIVCC(W) IIVCC(A) VIVCC(V) PIVCC(W)

80% 30  /  29 1.6 / 0.8 45  /  24 362 0.7 253
95% 41  /  35 2.0 / 0.9 82  /  34 430 0.8 307

80% 20.9 1.56 30.0 1.9e3 24.9 62e3
95% 28.3 1.78 50.6 9e3 119 1.8e6
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state estimate

Implementation of digital LQG controller

RWM
measured

or simulated

€ 

ˆ x 

LQG Controller

€ 

u

€ 

y

€ 

u

Linear
Quadratic
Estimator

LQE

€ 

w disturbances
and noise

control vector
(applied voltages
or current to
control coils)

€ 

z diagnostics

measurements
(magnetic field
sensors)

Linear
Quadratic
Regulator

LQR
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Detailed diagram of digital LQG controller

• State estimate stored in LQE provides information about amplitude and phase of RWM
and takes into account wall currents

• Dimensions of LQE matrices depends on
 State estimate (reduced balanced VALEN states)~10-20
 Number of control coils ~3
 Number of sensors ~ 12

• All matrixes in LQE and LQR are calculated in advance using VALEN state-space for
particular 3-D tokamak geometry

€ 

ˆ x i+1

LQG Controller

LQE

€ 

ˆ x i+1  =    Aˆ x i  +   Bui  +   K f y i − ˆ y i( )

ˆ y i  =      Cˆ x i

LQR

€ 

ui+1  =    −Kc ˆ x i+1

€ 

ui+1

€ 

yi
state process control filter
estimate matrix  matrix gain 

measure- measure
ment ment matrix

controller
gain
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Balanced truncation significantly reduces VALEN
state space

Balancing
transformation
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What is VALEN state-space?
How to find balancing transformation           ?
How to determine number of states to keep ?

~3000
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State-space control approach may allow
superior feedback performance

• VALEN circuit equations after including plasma stability effects the fluxes at the
wall, feedback coils and plasma are given by

• Equations for system evolution are given by

• In the state-space form

where
& measurements            are sensor fluxes. State-space dimension ~1000
elements!

• Classical control law with proportional gain defined as

    

€ 

r 
Φ w =

t 
L ww ⋅

r 
I w +

t 
L wf ⋅

r 
I f +

t 
L wp ⋅ Id

r 
Φ f =

t 
L fw ⋅

r 
I w +

t 
L ff ⋅

r 
I f +

t 
L fp ⋅ Id

Φp =
t 
L pw ⋅

r 
I w +

t 
L pf ⋅

r 
I f +

t 
L pp ⋅ Id

    

€ 

t 
L ww

t 
L wf

t 
L wpt 

L fw
t 

L ff
t 

L fpt 
L pw

t 
L pf

t 
L pp

 

 

 
 
 

 

 

 
 
 
⋅

d
dt

r 
I wr 
I f
Id

 

 

 
 
 

 

 

 
 
 

=

t 
R w 0 0
0

t 
R f 0

0 0
t 
R d

 

 

 
 
 

 

 

 
 
 
⋅

r 
I wr 
I f
Id

 

 

 
 
 

 

 

 
 
 

+

r 
0 
r 
V f
0

 

 

 
 
 

 

 

 
 
 

  

€ 

r ˙ x =
t 
A 

r 
x +

t 
B 

r 
u 

r 
y = C

r 
x 

    

€ 

r 
x =

r 
I w  

r 
I f   Id( )

T
;     

t 
A = −

t 
L −1 ⋅

t 
R ;     

t 
B =

t 
L −1 ⋅

t 
I cc;     

r 
u =

r 
V f

  

€ 

r 
u = −

t 
G p

r 
y 

  

€ 

r 
y =

r 
Φ s

I



                                  NSTX physics Mtg.  2008 O. Katsuro-Hopkins 17

Balanced transformation is determined by
controllability and observability grammians

• A system with transfer function:

is called controllable if the initial state x(t0) can be steered to any
arbitrary state x(t1) in a finite time (t1-t0) by using some control   u.

is called observable if the initial state x(t0) can be determined uniquely
from the output y(t) on the range t in [t0,t1]
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Measure of system controllability and observability is
given by controllability and observability grammians.

• Given stable Linear Time-Invariant (LTI) Systems

• Observability grammian,  , can be found be solving
continuous-time Lyapunov equation,  , provides
measure of output energy:

•   defines an “observability ellipsoid”
in the state space with the longest principal
axes along the most observable directions

• Controllability grammian,  , can be found be solving
continuous-time Lyapunov equation,       , provides measure of
input(control) energy:

•   defines a “controllability ellipsoid”
in the state space with the longest principal
axes along the most controllable directions
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• Controllable, observable & stable system
called balanced if

 where

- Hankel Singular Values
• The balancing similarity transformation

transforms the observability and controllability
ellipsoids to an identical ellipsoid aligned with
the principle axes along the coordinate axes.

• The balanced transformation    can be defined
in two steps:
 Start with SVD of controllability grammian

and define the first transformation as
 Perform SVD of observability grammian in the new basis:

the second transformation defined as
 The final transformation matrix is given by:

Balanced realization exists for every stable
controllable and observable system
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HSV spectrum of VALEN state-space analysis
suggests the number of modes necessary for the

system reduction
• KSTAR LQG controller uses

4 central IVCC & 16 mid-
plane poloidal sensors

• Clear gaps in KSTAR HSV
spectrum

• The number of modes
necessary for the system
reduction needs to be
verified further by actual
controller performance
designed based on the
reduced model

# of modes

H
SV

i

KSTAR

III
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Determination of LQR (optimal controller) gain for the
dynamic system

For given dynamic process:

Find the matrix such that control law

minimizes Performance Index:

where tuning parameters are presented by           -  state and control
weighting matrixes,

Controller gain for the steady-state can be calculated as
Where is solution of the controller
Riccati equation
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Determination of LQE (optimal observer) gain for the
dynamic system

For given stochastic dynamic process:

with measurements:
Find the matrix       such that observer equation

minimizes error covariance:

where tuning parameters are presented by           -  plant and measurement noise
covariance matrix

Observer gain for the steady-state can be calculated as
Where is solution of the observer
Riccati equation
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Closed system equations with optimal controller and optimal
observer based on reduced order model used for off-line testing
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⇐Closed loop continuous system
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 Test if Optimal controller and observer

stabilizes original full order model and
defined number of states in the LQG
controller

 Verify robustness with respect to βn

 Estimate RMS of steady-state currents,
voltages and power
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Optimization of observer also reduces number of states
needed to stabilize full order unstable system

• The first HSV corresponds to unstable RWM and is set to be infinity and not shown on the plots.

• KSTAR state-space based optimal controller and generic observer uses 27 states, and LQG
(optimal controller and optimal observer) based on 3 states only.

• NSTX optimal controller and generic observer needs 15 states  and LQG (optimal controller and
optimal observer ) needs only 7 states.

# of modes

H
SV

i

# of modes
H

SV
i

KSTAR

III

unstable unstable

unstable unstable

stable

stable stable

NSTX (12 upper Bp sensors )

stable
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Advanced controller methods planned to be tested
on NSTX with future application to KSTAR

• VALEN NSTX Model includes
 Stabilizer plates for kink

mode stabilization
 External mid-plane control

coils closely coupled to
vacuum vessel

 Upper Bp sensors in actual
locations

 Compensation of control
field from sensors

 Experimental Equilibrium
reconstruction (including
MSE data)

• Present control system on
NSTX uses Proportional Gain

RWM active stabilization coils

RWM sensors (Bp)

Stabilizer
plates
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Advanced control techniques suggests significant feedback
performance improvement  for NSTX up to             = 95%

• Classical proportional
feedback methods
 VALEN modeling of

feedback systems agrees
with experimental results

 RWM was stabilized up to
βn = 5.6 in experiment.

• Advanced feedback
control may improve
feedback performance*
 Optimized state-space

controller can stabilize up to
Cβ=87% for upper Bp
sensors and up to Cβ=95%
for mid-plane sensors

 Uses only 15 for optimal
controller and generic
observer and 7 states for
optimal observer and
controller design (LQG)
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(1
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DCON
no-wall

limit

Experimental (control off)
(β collapse) With-wall limit

active control
passive
growth

active
feedback

Experimental (control on)

Advanced
Feedback

Bp sensors

Advanced
Feedback

M-P sensors
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βn βn
wall

LQG
Bp sensors

*O.Katsuro-Hopkins at al., Nucl. Fusion 47 (2007) 1157-1165.
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Using existing experimental data LQE can be
tested off-line

• State estimate    , calculated in observer provides information about the phase and
amplitude of the RWM and can be compared with  diagnostic

LQE
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At least three ways to stabilize RWM with
varying phase

• LQG can be designed based on VALEN with
rotating mode, represented by sine and cosine
terms (gives phase information).

• Phase can be identified using existing Fourier
decomposition tools and consequent application of
a look up table for LQG parameters precalculated
for fixed mode phases of non-rotating mode.

• RWM phase can be determined using the sensor
measurements and geometry and implemented in
the reduced VALEN state-space form.
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Next steps and future work on the KSTAR
stability analysis

• Expand equilibrium / ideal stability analysis as needed
 Collaborate on equilibrium reconstructions of first

plasmas

• Closer definition of RWM control system circuit by
interaction with KSTAR engineering team

• Improved noise model for KSTAR sensor noise
• LQG controller with plasma rotation for KSTAR
• LQG controller tests on NSTX with application to KSTAR

RWM control system design
• Critical latency testing for KSTAR RWM control
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KSTAR is capable of producing long-
pulse, high βn stability research

• Machine designed to run high βn plasmas with low li and
significant plasma shaping capability

• Large wall-stabilized region to kink/ballooning modes with
βn/ βn

no-wall = 2 at highest  βn predicted for the device
 Co-directed NBI, passive stabilizers allow kink stabilization

• Active IVCC mode control system provide effective RWM
control
 IVCC design allows active n= 1 RWM stabilization at very

high Cβ> 98%

• Fast IVCC circuit for stabilization is possible at reasonable
power levels


