

Intrinsic Rotation Regimes in TCV L-mode Plasmas

A.Bortolon, B.P.Duval, Y. Andrebe, A. Karpushov and the TCV team.

Centre de Recherche en Physique des Plasmas, EPFL Association EURATOM

- Plasma rotation has a role in many aspects of confined plasmas performances (energy confinement, transport barriers, RWM stabilization)
- Need for reliable models to predict intrinsic rotation in large fusion devices
- Robust experimental observations in H-mode from different machines: co current toroidal rotation, scaling with plasma energy
- L-mode shows more rich phenomenology: useful to assess interplay between different aspects
 - Neoclassical rotation
 - Turbulent momentum transport
 - MHD effect
 - Coupling core–edge physics

CXRS diagnostic is composed of 3 systems optimized for observation of the Carbon VI 529.1 nm CX emission from Diagnostic Neutral Beam Injector

Diagnostic Neutral Beam Injector (H⁰)

- Injection angle 11°
- Extracted current 3A, acceleration voltage 50 kV
- Injected power < 80 kW
- 20-70% absorption (mainly on the electrons)
- 50-100 ms modulation for background subtraction

Negligeable applied torque

During TCV opening (2007-2008) CXRS diagnostic has been upgraded in both observation configuration and detection system

Each system is now equipped with:

- 1. 2 bundles of 20 optic fibers 40 chords in *coupled* or *extended* configuration
- 2. Czerny-Turner spectrometer
 - 1. f/7.5, 2400l/mm holographic grating
 - 2. double entrance slit
 - 3. optical reducer/intensifier
- 3. CCD back illuminated detector

512x512 pixels, frame transfer, double node read out

<u>Higher radial resolution (2.5 \rightarrow 1 cm)</u>

Radial coverage up to plasma edge

1. Limited L-mode

- Co and counter current toroidal rotation regimes
- Triangularity effect
- Radial electric field
- 2. Diverted L-mode
 - Co and counter current toroidal rotation regimes
 - Magnetic configuration effect
 - Radial electric field

3. Momentum transport estimates

1. Limited L-mode

- Co and counter current toroidal rotation regimes
- Triangularity effect
- Radial electric field
- 2. Diverted L-mode
 - Co and counter current toroidal rotation regimes
 - Magnetic configuration effect
 - Radial electric field

3. Momentum transport estimates

Stationary u_{ϕ} in limited L-mode

Typically counter current rotation is observed

- 1. Core region ($\rho < \rho_{inv}$): convex $u_{\phi}(r)$ due to sawteeth ($\tau_{ST} \sim 5$ ms)
- 2. Intermediate region ($\rho_{inv} < \rho < 0.85$): $u_{\phi}(\rho) \propto T_i(\rho)$
- 3. Edge region (ρ >0.85): $u_{o}(\rho) \leq 0$

Stationary u_{ϕ} in limited L-mode

- u_b max determined by sawteeth inversion radius
- At lowest q_e sawtooth affect the gradient region \rightarrow flat $u_{_{\! \! \Phi}}$ profile

- Profile reverses with B_{ϕ} reversal
- $u_{\theta} \sim 1-2$ km/s, close to neoclassical values (0.05-2 km/s)
- Decreasing towards the core
- Peak close to the edge

Toroidal rotation inversion

CRPP

For n_{e0} >4x10¹⁹ m⁻³ and q_e ~3 co-current rotation profile

- ♦ Similar core velocity $u_{\phi0}$ ~10-15 km/s
- u_{\u03c0} peaking in the core region (sawtooth effect)
- Reverse gradient in intermediate region
- Similar $u_{o}(0.85) \sim -3$ km/s
- Smooth variation of temperature and density profiles

u_{ϕ} profile evolution across inversion

 $I_p=340$ kA, $\delta=0.3$, $\kappa=1.4$, $B_{o}=1.4$ T

CRPP

Rotation inversion obtained with a density ramp at I_p =const

- Core accelerates rigidly
- Transient cnt-acceleration of the edge
- Momentum conservation dynamic followed by edge dissipation

Rotation inversion reproducible

CRPP

Different density ramp discharges $I_p=340kA, \delta=0.3$

- ✤ Well defined n_e threshold
- Discharges separated by >3000 shots
- TCV 32458 curve corresponding to inversed I_p
- Little effect of machine conditioning (Boronised)
- Physical phenomenon

Mirnov coil spectrogram

Rotation inversion is often accompanied by MHD activity

- Small peripheral mode (m=2,n=1) at 6 kHz *
- Sawtooth crash precursor (1,1) at ρ_{inv} ~0.5 *
- Across the inversion precursor frequency 1. slows down (5 to 3 kHz)
- 2. After inversion precursor is less active (1 oscillation per crash) and the two modes evolve independently

- Still some change at ~same density
- Plasma edge "spins up"

Poloidal rotation and radial electric field

CRPP

Rotation inversion obtained in density ramp

- Slight increase of u_θ with density
- ✤ E_r peaks near the edge (smooth extrapolations to the edge for u_b and ∇ p)

Before inversion: E_r<0 After the inversion:

- ✤ E_r<0 in the edge</p>
- ✤ E_r>0 in the core

NO ABRUPT CHANGE IN CONFINEMENT OBSERVED

1. Limited L-mode

- Co and counter current toroidal rotation regimes
- Triangularity effect
- Radial electric field
- 2. Diverted L-mode
 - Co and counter current toroidal rotation regimes
 - Magnetic configuration effect
 - Radial electric field

3. Momentum transport estimates

Stationary u_p profile: I_p dependence

$I_p>0$, $B_{\phi}>0$, LSN, UNFAV

Density scan at I _ = 250kA, q _ {95}=3.6, δ =0.5, κ =1.6

Stationary profile in shot by density scan Lower Single Null Configuration

2 regimes observed

- $n_{e0}>4x10^{19} \text{ m}^{-3}$ hollow profile
- $n_{e0} < 4x10^{19} \text{ m}^{-3}$ peaked profile

Opposite effect respect to limited discharges!

- Variation of $u_{o}(0.85)$ with n_{e}
- Rigid shift of profile with density

n_e

Magnetic configuration effect

CRPP

- Rotation profile reverses (but at different densities)
- Different edge behavior for changing ∇B ion drift direction

Alessandro Bortolon Princeton Plasma Physics Laboratory, November 1st 2008

- $u_{o}(0.85)$ decreases with n_{e}
- 10 km/s offset between
 FAV and UNFAV
 configurations

Tempting link between measured SOL parallel flows:

- TCV collisional flows measured on LFS decrease with n_e
- transport driven flow induces asymmetry between configurations

$u_{\phi}(0.85)$ independent on the core rotation regime

MHD activity

CRPP

- Sequence of diverted discharges: stationary conditions, density scan
- [2,1] mode, close to plasma periphery
- [1,1] mode (sawteeth precursor)

Correlation of mode increase frequency with increasing plasma density

Poloidal rotation and radial electric field

CRPP

6

2

-2

-4

-6

Poloidal rotation profile for 2 discharges at extreme densities (n_e =2.5, 6x10¹⁹ m⁻³)

- Little u_{θ} variation in the uncertainties
- Smooth decrease to zero at the edge (peak is absent)

TCV 33384

n_{e av}=6.0x10¹⁹ m⁻

0.8

1. Limited L-mode

- Co and counter current toroidal rotation regimes
- Triangularity effect
- Radial electric field
- 2. Diverted L-mode
 - Co and counter current toroidal rotation regimes
 - Magnetic configuration effect
 - Radial electric field

3. Momentum transport estimates

 $(\nabla u_{\phi}, \text{ core physics})$ 2. boundary condition

(edge physics)

CRPP

TCV has no torque direct modulation **

- Transport coefficients estimated in spontaneous transient phases ••••
- Transport equation solved in 1D cylindrical model for selected cases and ** combination of transport coefficients

Reynolds stress

In absence of external torque the toroidal velocity profile is

determined by:

1. radial momentum transport

Momentum transport characterization

gradient if u≠0)

 $\frac{du_{\varphi}}{d\phi} + \nabla \cdot \Gamma = 0$

$u_{\boldsymbol{\boldsymbol{\phi}}}$ inversion from intrinsic torque variation

Viscous drag at boundary condition

$$\label{eq:Gamma-constraint} \begin{split} \Gamma_{b.c.} = \text{-k} \; [\; u_{\phi, b.c} - u_{\phi, stat.}] \\ \text{edge dissipation, determining dynamic of the} \\ \text{total momentum variation} \end{split}$$

- Φ = 0.34 m²/s >100 D_{φ,Neo}
- Transient edge acceleration reproduced
- ✤ Final u_o profile crossing zero is sustained

u_{o} inversion from convective pinch

Boundary condition velocity changing sign

 $\begin{array}{ll} u_{\phi,b.c} = -3 \rightarrow +3 \ \text{km/s} & \text{at the inversion} \\ \text{determining change of direction of convective} \\ & \text{momentum flux} \end{array}$

- ✤ D = 0.19 m²/s >100 D_{φ,Neo}
- $v_c = 6 m/s$
- No change in underlying physics is implied

- Intrinsic rotation observed in Ohmic L-mode
 - Limited L-mode (2 regimes)
 - Low density counter current
 - High density co-current
 - Edge velocity close to zero positive at LCFS
 - Diverted L-mode (2 regimes)
 - Low density co-current
 - High density counter current (limited behavior)
 - Edge velocity varies with current and density and acts as boundary condition
- Role of MHD in rotation inversion
- Large excursion in u₀ and E_r without dramatic change in confinement

3 regions interpretation scheme:

- Core region: sawteeth
 - ECH for sawteeth modification to study possible torque co current directed
- Edge region: physics of boundary condition
 - effect of plasma shape
 - parallel SOL fluxes, neutrals friction
- Intermediate region: non diffusive fluxes
 - which mechanisms can provide the non diffusive fluxes with the required dependencies?

Model results: inversion in diverted L-mode

- Reasonably good agreement
- Main features are matched:
 - Stationary profiles before and after inversion
 - Rigid core acceleration
 - Inversion timescale
 - Transient counter acceleration of the edge

- Two discharges shown where there is large measured difference in the Carbon content (from CXRS)
- Toroidal velocity evolution and the toroidal reversal are very similar

Limited L-mode: u_{ϕ} profile across inversion

CRPP

Rotation inversion obtained with a density ramp at I_p =const

lım

- Core accelerates rigidly
- Transient cnt-acceleration of the edge
- Momentum conservation dynamic followed by edge dissipation

DNBI has been upgraded to improved the performaces without increasing injected power:

- RF source replaced with arc-discharge source full energy (H⁺) fraction from 40-60% to 85%
 → more penetration
- 2. New focusing grids : divergence reduced from 0.65-0.75° to 0.5° \rightarrow more CX signal

Sample frequency 90 \rightarrow 50 ms

Measurements at higher densities (H-mode)

 $\delta = 0.11, -0.27, -0.36$

- Toroidal rotation inversion not seen
- Plasma toroidal profile flat in core with stronger counter-current rotation outside
- Profile flattens with decreasing δ with whole profile accelerating in countercurrent direction with n_e.
- Confinement increase (Camenen et al. Nucl. Fusion, 2007, 47, 510)

Alessandro Bortolon Princeton Plasma Physics Laboratory, November 1st 2008

X2 induced back transition

ECH heating -> higher threshold

ECH heating can drive a back inversion. Done!

- ne threshold is comparable
- pre-inversion velocity profiles are recovered

Alessandro Bortoloh Princeton Plasma Physics Laboratory, November 1st 2008

