XP818: Exploratory approach to finding ELM mitigation solution with midplane non-axisymmetric coils

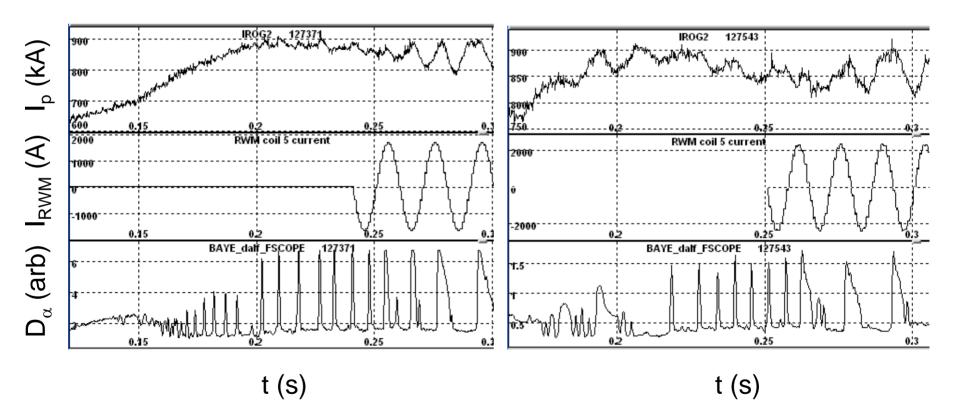
- Goal
 - Demonstration of ELM mitigation with NSTX midplane RWM coil set
- Approach
 - Target development
 - (i) low q_{95} < 6; (ii) swept q_{95} to insure mitigation not missed due to resonance ; (iii) high q_{95} > 8
 - □ Application of DC fields (broader *n* spectrum, new 2008 capabilities)
 - Past odd parity fields (n = 3, 1+3) operating on low q_{95} target
 - New even parity field (n = 2 (strong n = 4), 6) capability for 2008
 - New combined odd/even parity (present favorite n = 2 + 3)
 - Application of AC fields
 - Using either/both odd and even parity fields; co/ctr propagation
 - ELM mitigation through effects on edge plasma profiles
 - Feedback on n = 1
 - □ May be useful for giant ELMs, buildup detected by RWM B_r sensors
 - Repeat techniques showing most potential in low recycling (post-LITER)

XP818 ELM Mitigation run on two days last week

Task Number	of Shot
1) Create target plasmas	
A) Create q95 < 6 target: (generate at least 10 ELMs with approximately even spacing)	
(<i>q</i> 95 ~ 5.5 is adequate)	
 Use shot 124349 as setup shot, (Ip = 0.8 MA, Bt = 0.5 T), change NBI source C to 1 MW unmodulated 	2
- Raise <i>Ip</i> to 0.9 MA; change <i>Bt</i> to 0.45T, then 0.40T	2 3
- If $q95 > 6$ and insufficient ELMs, perform startup optimizations as per J. Menard	3
to raise <i>gmin</i> .	(0)
B) Create <i>q95</i> ramp target	(8)
- Start from low q95 target created in step (1A), <i>Ip</i> flat-top to 0.7 MA, ramping up	
to 1.0 MA; adjust eventual <i>Ip</i> flat-top if needed to create steady ELMs.	4
- if plasma drops out of H-mode, start <i>Ip</i> ramp from 1.0 MA ramping to 0.7 MA	(2)
- vary <i>Bt</i> to change range of <i>q</i> ramp (optional)	(2)
C) Create $q95 > 8$ target	(2)
- Use shot 124349 as setup shot, ($I_p = 0.8$ MA, $B_t = 0.5$ T), change NBI source C to 1 MW unmodulated	
- Drop <i>Ip</i> to 0.7 MA; tweak to 0.75 MA if desired	2
2) Attempt ELM mitigation with non-axisymmetric fields under normal recycling conditions	
- <u>DC fields</u> :	
A) Apply $n = 3$ field configuration; vary amplitude from 1.5 kA	4
B) Apply $n = 3 + 1$ field configuration; vary amplitude from 1.0 kA, 0.5 kA	4
C) Apply $n = 2 + 3$ field configuration	
(start from RWM (1-4) 0.5kA, RWM (2,6) 0.5kA, RWM (3,5) 1.5 kA)	4
D) Apply $n = 2$ field configuration; vary amplitude from 1.5 kA	4
E) Apply $n = 6$ field configuration (primary field is $n = 0$); vary amplitude from 2.5 kA	3
- <u>AC fields (pre-programmed)</u> :	
F) Apply $n = 3$; vary f above/below ELM frequency; vary amplitude from 2.0 kA	4
G) Apply $n = 1$ (co-propagating); vary f above/below ELM frequency; vary amplitude	4
H) Apply <i>n</i> = 1 (ctr-propagating); vary <i>f</i> above/below ELM frequency; vary amplitude	4
- <u>AC fields ($n = 1$ feedback</u>):	•
I) <i>n</i> = 1 <i>Br</i> feedback: giant ELM target (e.g. 125271), vary (i) gain (ii) phase	6
2) Attempt ELM mitigation with non-axisymmetric fields under reduced recycling conditions	16
3) Attempt ELM mitigation with non-axisymmetric fields under reduced recycling conditions	10
Total (optional):	64 (12

XP818 successful so far in changing ELM frequency

- ELM frequency initially reduced with application of AC fields
 - □ First shown with n = 3 AC standing wave, then n = 2 AC
 - AC fields allow application of greater peak RWM coil current before plasma rotation damping becomes too severe
 - Also shown with DC fields
 - □ Jokingly named: "Pulsed High Amplitude Transient" PHAT ELMs
 - Longer duration (multi-filament), lower frequency than Type I


Key to now understand the effect - aim for mitigation

- **Effect** is not restricted to a narrow range of q_{95} a good thing!
 - Mitigation in DIII-D shown to be sensitive to q₉₅
- Effect is apparently not highly sensitive to applied field
 - Clear dependence on field amplitude
 - Dependence on field configuration (n = odd, even) and application (AC, DC) not yet concluded
- Frequency ~ 50Hz largely independent of applied field
 - Variation of plasma quantity is affecting ELM

Reduced ELM frequency observed in several applied field configurations

n = 3 AC field, 70 Hz, 3.8 kA peak-to-peak

n = 2 AC field, 70 Hz, 5.5 kA peak-to-peak

Timing of PHAT ELMs correlated to timing of applied field in dedicated shots
 NSTX

XP818: ELM mitigation w/midplane coils - SAS, JKP, RM, SG