

XP-823: Robustness of improved error field suppression in long-pulse discharges

College W&M **Colorado Sch Mines** Columbia U Comp-X FIU **General Atomics** INI Johns Hopkins U LANL IINI Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

Jon Menard, PPPL

NSTX Physics Meeting PPPL May 19, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoao U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokvo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ENEA. Frascati CEA, Cadarache **IPP. Jülich IPP**, Garching **IPP AS CR** U Quebec

n=3 error field measured at 0.75MA and 1.1MA

Expands 2007 data set obtained at 900kA

• 750kA: optimal I_{SPA-n=3} = 300-400A

- 1.1MA: optimal I_{SPA-n=3} = 500-600A
- Corrective field (roughly) proportional to PF5 and plasma current
 - No measurable n=2 EF (S. Gerhardt)

 \rightarrow n=3 EF most likely due to PF5 coil, which is known to have n=3 asymmetry

In 2007, using optimized B_P sensors in control system allowed feedback to provide most/all n=1 error field correction at high β

- Previous n=1 EF correction required a priori estimate of intrinsic EF
- Additional sensors \rightarrow detect modes with RWM helicity \rightarrow increased signal to noise
- Improved detection → higher gain → EF correction using <u>only feedback on RFA</u>

EFC algorithm developed in FY07:

- Use time <u>with minimal intrinsic EF</u> and RWM stabilized by rotation
- Intrinsic Ω_φ collapse absent in 2007
 → purposely apply n=1 EF to reduce rotation, destabilize RWM
- Find corrective feedback phase that reduces applied EF currents
- Increase gain until applied EF currents are nearly completely nulled and plasma stability restored
- Then turn off applied error field (!)

5 G_p=0.0 G_p=0.5 approximate no-wall limit G_p=0.7 RWM/EF coil current (50ms smoothing) 200 amperes 100 0 -100 125320 125321 125322 -200 125323 0.2 0.4 0.8 0.6 1.0 seconds

Normalized beta

 \rightarrow Use same gain/phase settings to suppress RFA from intrinsic EF and any unstable RWMs

n=1 feedback gain, LP filter optimized for I_P= 1.1MA Expands 2007 data set at 900kA

- Instead of applying known n=1 EF, used OHxTF EF (1.1MA uses full OH swing)
- Used B_P U/L averaging from 2007, included n=3 EFC (new for 2008)
- Increased gain scan by factor of 3: 0.7 in 2007 \rightarrow up to 2 in 2008
 - Response to n=1 RFA from OHxTF error field changes little for G_P > 1
 - System marginally stable at $G_P = 2$ for τ_{LPF} as low as 1-2ms
- → Optimal control parameters: $G_P = 1-1.5$, $\tau_{LPF} = 2-5ms$

ISTX

n=3 EFC + n=1 feedback important at lower current (< 900kA) for extending pulse lengths

- Pulses commonly disrupt near ~ 0.6s w/o mode control
 - − At high beam power (high $\beta_N = 5.5 \rightarrow 6$), mode control insufficient to avoid disruption (not shown)

n=3 EFC + n=1 feedback was successfully applied to wide range of plasma current = 0.75-1.1MA

• Pulses run reliably until nearly all OH flux is consumed

ISTX

Optimized mode control + Lithium \rightarrow record NSTX pulse-lengths

- Flux consumption reduced following LITER experiments
 - Lower V_{LOOP} at lower P_{NBI}

- Li + optimized EFC \rightarrow
 - Avoid late n=1 rotating mode
 - rotation sustained
 - $\beta_{\text{N}} \geq$ 5 sustained 3-4 τ_{CR}
 - record pulse-length = 1.8s

VSTX