DOES FAST ION MHD DRIVE MAGNETIC ELECTRON TRANSPORT IN NSTX ?

D. Stutman, L. Delgado-Aparicio, K. Tritz and M. Finkenthal Johns Hopkins University

- Puzzle we try to solve
- Is T_e flattening genuine electron transport effect ?
 low-f MHD
- Fast ion redistribution due to Fast Ion MHD
- Strong anomalous ion heating (CAE)
- Indications for magnetic electron transport
- What else fall in place if we assume magnetic transport ?
- Fast ion connection
- Possible implications, further work possible

Puzzle we try to solve : Why central T_e flattens / electron transport increases with P_b in NSTX H-modes?

'High performance' H-modes, 1 MA 4.5 kG , t=0.42 s

- TRANSP computes v*ery* rapid electron transport inside r/a ≤0.4
- Perturbed transport also very rapid (global T_e crash at Type-I ELM, pellet)
- Ion transport around neoclassical

Perturbative experiments also indicate rapid transport

T_e flattening persists also at higher B_t , I_p , and later in time

Technique developed to probe electron transport at fixed-q

• Compare χ 's at ~1.5 beam slowing times

Largest change in χ_e at 4->2 transition

 4->2 power balance assumes neoclassical ion transport (CHERS affected by pellet puff, see below)

Why χ_e in 4->2 case assuming $\chi_i \sim \chi_i^{NC}$ likely correct

• T_i right before pellet injection, W_{tot} well reproduced with $\chi_i \sim \chi_i^{NC}$

Perturbative picture consistent with power balance

- In 4->6 case the cold pulse reaches plasma axis in ~ 2 ms
- In 4->2 case pulse strongly damped inside r/a < 0.6, faster recovery of perturbed profiles in the outer plasma
- Rapid electron transport at high P_{NB} confirmed also by ELM cold pulse (05-06 runs)

- Consistent with cold pulse being damped in the center
- No similar data for 4->6 case

Increasing B_t improves mainly e⁻ transport at r/a > 0.5 (preliminary)

Consistent with previous scaling/local transport results (S. Kaye)

Is T_e flattening genuine electron transport effect ?

What other than rapid transport could cause T_e flattening in NSTX? ('TRANSP is wrong' hypothesis)

- Large islands (low-f tearing modes) in the plasma center
- 'Giant' ELMs propagating to the center
- MHD activity flattens the fast ion (FI) profile (main electron heating source) (low-f tearing modes, fast ion MHD, such as AEs, EPMs)
- Fast ion driven waves directly heat the thermal ions (e.g., CAEs, Gates '02)
 'stealing' a large fraction of the beam power from the electrons

No large islands in the central plasma or giant ELMs

Fast ion profile can indeed be flattened by AEs, EPMs

Heidbrink et al 2007

- Accompanied by large mismatch between measured and TRANSP neutrons
- Mostly TAE, EPM modes play a role (often faint in our cases)

• FI profile crashes at MHD, but restores peaked character

In NSTX neutrons match, χ_e little affected by flat FI profile

- TRANSP fast ion diffusivity artificially increased to study redistribution
- Neutron rate decreases well below experiment, while central χ_e changes little
- Same effect when D_{FI} increase limited to r/a < 0.5
- Flattening of fast ion profile does not explain T_e flattening in these plasmas

No significant heating anomaly in these high n_e, P_b H-modes

- At high n_e the anomaly in the power balance should be enhanced (Q_{ie}~P_b)
- TRANSP predicts W_t, neutrons (-12%) -> plasma profiles, FI modeling ~Ok

$\chi_i \sim (0.5-1) \times \chi^{NC}$ matches well the experiment

- Anomalous ion heating $\leq 0.5 \times \chi^{\text{NC}}$ at high n_e
- Note also that $\chi_e \sim \chi^{CH}$ at high n_e
- Rapid electron transport in central NSTX
 plasma not a TRANSP artifact

Hints for magnetic electron transport in NSTX

 Magnetic (stochastic) transport brings parallel thermal velocity into play -> electron thermal transport most rapid Gas Electron Multiplier (GEM) hard X-ray spectrum in NSTX H-mode (Pacella 06)

Early Alcator X-ray spectrum Molvig 78

- Detector counting threshold scanned in time (10 ms)
- Tail apparent above 6 keV

Mismatch between hard X-ray and magnetic flux surfaces

Hard X-ray images of NSTX core (Pacella 04)

Tokamak-like χ_e , T_e profiles at low P_b, RFP-like at high P_b

- Rapid magnetic transport without ∇T_e documented in RFP core (tearing)
- Large Te(r), χ_e difference between 6 and 2 MW cases consistent with *qualitative* change in electron transport in NSTX : electrostatic -> magnetic

Proposed picture of electron transport in NSTX

Conditions

high P_b (FI drive)

moderate to high n_e (resistive MHD)

elevated q / low magnetic shear (density of rational surfaces)

- ρ_i -scale islands at rational-q
- Flat T_e in region of low s, T_e gradient where s high
- 'Magnetic core', 'electrostatic edge'
- Primarily low-A effect (toroidal mode coupling)
- Some stochastic ion heating (reconnection 'sea') , non-thermal T_e , T_i likely

What else fall in place if we assume magnetic electron transport ?

P≤ 2 MW - mostly intact flux surfaces, tokamak-like transport

- 4 MW partially broken surfaces, onset of magnetic transport
- 6 MW mostly broken surfaces, strong magnetic transport

- T_e profile stays unchanged while n_e steadily increases -> $\chi_e \propto 1/n_e$
- q, s change little after t > 0.4 s; v_{ei} increase only possible cause
- Strong support for magnetic transport hypothesis
- $\chi_e \sim \chi^{CH}$ at high n_e suggests 'transport step' becomes limited to ρ_i

q-profile, magnetic shear do not change much after t~0.4 s

Picture also explains why high T_e only at low n_e in NSTX

- Propensity for µ-tearing reduced at low collisionality (resistive MHD)
- High T_e at low n_e even when s>0

Picture also explains strong q role in NSTX electron transport

1 + 0.2

0.4

0.6

0.8

• Plasmas with same P_b but lower q have better electron transport (less dense rational surfaces)

Fast ion connection

Gradient driven transport paradigm breaks inside r/a<0.4

- Plasma with less gradient has worse transport
- Heat flux vs. ∇T_e shows low gradient region expanding with P_b

Central T_e gradient too low to drive any instability

∇T_e driven TEM, ETG, r/a~0.2 Smith 08

124887 @ 113 cm 6 (a/LTe) measured - (a/LTe) GS2 crit. grad. (1) 5 (a/LTe) GS2 crit. grad. (2) (a/LTe) Jenko crit. grad. 4 3 a /L T e GS2 2 - 1 0 measured -1 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 Time (s)

∇T_e driven micro-tearingWong 08

Fast ion gradients 'the only game in town' at $r/a \le 0.4$

H-mode gradients 6 MW 1 MA 4.5 kG

• Fast ions have also gradient in phase space

Shear Alfven modes (SAE) predicted to induce micro-tearing

- Islands of ~ ρ_i width form at rational surfaces, due to cancelling of local magnetic shear by the mode eddy current
- Could affect large plasma volume, since rational surfaces spaced at ~ ρ_i
- Central region of low magnetic shear / flat-q most susceptible

Broad band SAEs in NSTX as component of GAE activity (Fredrickson, Gorelenkov, Belova)

• High-n modes localized in the central plasma, $\delta B/B \le 10^{-3}$ amplitude

Strong / weak GAE activity correlates with high / low central χ_e

High-k scattering shows GAEs but no sub- ρ_i scale fluctuations (preliminary)

• Possible indication for electron transport mechanism being at $\geq \rho_i$ scale

Very similar plasmas without GAEs have higher central T_e

