XP802: Active RWM stabilization system optimization and ITER support

Goals

Progress 4/11/08

- □ Alter active control configuration to achieve <u>highly reliable</u> RWM stabilization at various plasma rotation, ω_{ϕ}
 - Upper/lower RWM B_r, B_p sensors, follow from best CY2007 feedback settings
 - B_r sensor feedback provides RFA correction, B_p provide RWM stabilization
 - Determine if stable, low $\omega_{\phi} < \omega_{*i}$ operation exists with feedback turned off
 - If achieved, control system open as a tool for all NSTX XPs as desired
 - Specific ITER support requests
 - Study effect of applied time delay on feedback (requires control system time delay capability)
 - Determine impact of a large toroidal gap on active RWM stabilization to simulate ITER port plug coil geometry (take out one of six control coils)

Addresses

- Joule milestone, ITER Organization (IO) request, NSTX PAC request
- □ ITPA experiment MDC-2

Initial RWM signature leads to rotating global kink

Transition to global kink indicates that mode(1) is an RWM

USXR shows transition from RWM to global kink

K. Tritz

Initial RWM locked signature spins up, amplitude dies away

 NSTX XP802 results - S.A. Sabbagh

Significantly different than DIII-D results (H. Reimerdes)
 NSTX

XP802 results - S.A. Sabbagh

<u>Terminating event appears to be an internal kink</u>

XP802 results - S.A. Sabbagh

n = 1 feedback / RWM results show stabilization detail

General conclusions (so far)

- n = 1 feedback system has produced far greater reliability of discharge avoiding RWM
 - Statistics being compiled
- \Box n = 1 feedback system does not insure stability against RWM
 - Reasons for failure being analyzed (e.g. fast mode growth)
- Mode characteristics appear to be RWM, not tearing
 - Unlike present observation/conclusion by DIII-D
 - Mode spin up, converts to global kink mode initially, tearing appears later
 - Feedback system might be easing transition to rotating kink by altering boundary condition
 - Results to date question the validity of a "critical rotation" for RWM

• Next Steps

Analysis of XP830 RWM Stabilization Physics (Berkery), and related analysis to test kinetic stabilization model producing "bands" of stability/instability in rotation, beta

