Hosea_June 4: XMP026 and XP825

XMP026: Conditioning in deuterium

- Conditioned antennas up to 3 MW in deuterium.
 - heating deteriorated at -90 and -150 deg during morning consistent with an observed increase in edge density shot to shot. Pumping without NB was insufficient to keep edge density low.
 - heating was not evident at all at 30 deg.
 - increasing the outer plasma-antenna gap did not reduce the edge density or improve the heating. Putting in lithium at a 5 mg/min rate for a few shots did not affect edge density as well.

XP825: Heating for deuterium L-mode vs phase

- Performed modulation heating experiments under XP825 to help determine efficiency.
 - Applied lithium at 20 mg/min rate and observed strong reduction of edge density. Recovered heating to ~ 3 keV at -150 and -90 deg.
 - Significant increase in electron temperature and stored energy observed at -30 deg for first time in deuterium.
 - Significant PDI impurity ion heating observed with ERD in the periphery of the plasma. Carbon and helium "hot" temperatures in the range of 400 eV. Also, lithium I and II energy distributions measured with "hot" temperature for lithium II up to ~ 400 ev. The rotation of the lithium ions was ~ 80 km/s and the radial electric field indicated by the lithium ions was ~ 20 kV/m.

Stored energy increase at 30 deg in deuterium - with lithium injection to decrease edge density

Hosea_June 2-3: XP817

XP817: CHI Startup

- HHFW applied to startup with CHI-Ohmic combo under XP817
 - Matched to CHI conditions at end of run on June 2.
 - Coupled power to CHI and OH phases on June 3.
 - Coupled ~ 550 kW to transition 10 to 22 msec and heated core from ~ 3 eV to ~ 15 eV at 20 ms.
 - Coupled ~ 550 kW to transition 18 to 64 ms and heated axis (hollow core) from ~ 3eV to ~ 33 eV.
 - Clear heating of ohmic phase. Coupled ~ 1.1 MW from ~ 65 to 120 ms and heated on axis from ~ 140 ev to ~ 700 eV at $n_e(0)$ ~ 6 and ~9 x10⁺¹² cm⁻³, respectively. Suggests that ECH/HHFW could be used to heat up plasma during startup. Rampup in current needs to be simulated to see if it is feasible.

Heating at 20 msec

Heating at 53 msec

P_{RF} = 550 kW 20 - 64 msec

J. Hosea June 9, 2008

J. Hosea June 9, 2008

7