

Supported by

"Enhancement to LLD Capability for Divertor Pumping to Control Edge Collisionality for the FY11 Joint Research Milestone"

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U Purdue U SNL** Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

H. W.Kugel

ARRA Projects Discussion B-318 May 18, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

An Enhancement of the LLD that Includes the Inner Divertor Needs to Resolve Existing Programmatic Concerns and Design Limitations

• PROGRAM: Outer Divertor was chosen for LLD-1 as the lowest risk location to XP's requiring high performance, high- δ discharges.

RADIUS & WIDTH	PROGRAM RISK LEVEL	Consequence
Inner-half, Inner Divertor	Highest	This is the high performance, high- δ region. If LLD malfunctions, stop the run, vent, and fix malfunction.
Outer-half, Inner Divertor	Medium	If LLD malfunctions could run inboard, but flux expansion would overlap LLD.
Inner-half, Outer Divertor	Lowest	If LLD malfunctions could run in high performance, high- δ region almost unchanged.

• DESIGN: To meet the program schedule, it was necessary to adopt readily available and affordable lithium handling technologies. This limits the LLD-1, (baseline case), to low fill rates, thin coverage, short pulses, and low powers (200-400 ms, 1-4 MW).

Enhancements to LLD Prior to LLD-1 Results

3

Enhancement-1: Characterize Power Density Limits for Long Pulses via e-beam Testing of LLD-1 Samples, and Candidate Surfaces

- Existing LLD-1 power-handling information is based on PPPL and SNL simulations. Benchmarking these simulations to remove uncertainties involving heat transfer coefficients (Li/Mo, Li/SS, Mo/SS, SS/Cu) and 3D effects would allow for enhancement and operation planning.
- Experimental e-beam studies were intended but never performed.
- The L-245 e-beam facility is complete. This option requires NSTX labor support, plus \$2K for M&S.
- An e-beam facility at UIUC is a possible alternative facility. This option is less flexible. It requires moving personnel, IR camera, IR window and other equipment to UIUC for scheduled experiments.
- e-beam testing is a critical path need for planning:
 - FY 10 XPs
 - FY10 LLD-1 operations
 - Achieving an Inner Divertor LLD concept and specifications
 - Next-step enhancements

Enhancement-2: Improve Lithium Loading-Test Liquid Lithium and Lithium Powder Feed Systems

- A prototype Molten Liquid Lithium Extractor has been fabricated and is in the queue for testing after present work is completed.
- Lithium powder dropping will be tested after other LLD work is completed.
- Testing Liquid Lithium and Lithium Powder Feed Systems is needed to determine how an Inner Divertor or improved Outer Divertor LLD design needs be changed to accommodate the selected system(s).
 - A capillary liquid lithium fill system would enter at one spatial location, and exit at one spatial location, and depend on stable wetting behavior to transport Li from input to output.
 - A high capacity evaporator and/or powder fill system would need special equipment installed elsewhere on the vessel but would make a plate design simpler.

Enhancement-3: Design Inner Divertor LLD Plates

- To be acceptable to the NSTX program, a design for Inner Divertor LLD plates requires:
 - 1-2 sec, power handling capability for +6MW NBI (+RF?, + upgrade?)
 - High lithium fill rates with adequate area and depth coverage
 - If the LLD can be operated < 350°C, a fluid heating system would be a simpler design than an electrical heating system.
 - Recoverable following vents
- e-beam testing is a critical path need for planning:
 - Achieving an Inner Divertor LLD concept and specifications
- Testing Liquid Lithium and Lithium Powder Feed Systems is needed to determine how an Inner Divertor or improved Outer Divertor LLD design needs be changed to accommodate the selected system(s).
- Experienced testing and design engineering support to do this work has not been available.

Enhancement-4: Increase LITER Reloading Capability From 2 to 4 Probes

- An Work Authorization Form (WAF) has been drafted for ARRA funding of:
- Two additional LITER probe systems for:
 - 2 on the vessel, and 2 off the vessel for reloading
 - 2 additional LITER support stands
 - 2 pumpcarts
- Work to be completed by ~3/10

Enhancement-5: Develop Global Lithium Coverage: Coat All Exposed Graphite and Metal

- For NSTX to reach the theoretical limit of recycling (~0.15) and achieve nearmaximum possible impurity control is would be useful to have the capability to lithium coat all plasma facing graphite and metal.
- A simple high rate evaporating system for global coverage is required.
- A candidate high rate lithium evaporating system for CS, upper divertor, passive plate, and outer wall coverage would use LITER, or LITER-U, and LLD:
 - Re-evaporating lithium coatings from the LLD requires:
 - a fast Li fill system or faster LITER reloading
 - not stressing LLD heater system (<400°C)

Schedule and Costs

- Enhancements to LLD-1 have been identified
 - 1) Characterize power density limits for using e-beam testing
 - 2) Improve Li loading: test liquid and powder Li feed systems.
 - 3) Design Inner Divertor LLD plates.
 - 4) Increase LITER reloading capability from 2 to 4 probes.
 - 5) Develop global Li coverage: coat all exposed graphite/metal.
- Some tasks can be completed or initiated with existing Li R&D support. Rate of progress will depend on available support. Detailed Job Estimates have not been completed.

