XP935: Search for multiple RWM behavior at high β_N

Goals

- Determine if unstable RWM is born from observed, stable RWM (with ω at peak resonant field amplification XP931), or a 2nd mode. Either result is important:
 - If same mode, supports single mode physics model; key conclusion for RFA control of NBI (future milestone)
 - If second mode, supports multi-mode theory, PRL-level conclusion, key conclusion for RWM control in ST, also, key conclusion for RFA control of NBI
- Determine β_N dependence of RFA for these modes near marginal stability
- $\hfill \square$ Determine effect of $\omega_{_{\! \! \! 0}}$ on both modes as marginal stability approached
- \square Determine effect of active n = 1 control for these modes near marginal stability

Status (XP ~ 75% completed)

- Scan in normalized beta completed
 - Most shots do not have MSE; can use baseline record $\beta_N = 7.2$ shot for analysis
- co-rotating 30Hz seed fields appear to be amplified more strongly than counter, consistent with RFA
- \square 20-30 Hz activity was shown to increase in radial extent as β_N increased
- The observed growing RWM appears to be independent of the 20 30 Hz activity (analysis continues)

