Status of JT-60SA Project and Rokkasho Broader Approach activities

T. Fujita

JT-60SA Project Team 801-1 Mukoyama, Naka, Ibarakai, 311-0193 Japan

> Experimental Seminar, PPPL 3rd February 2010

- 1. Broader Approach
- 2. Status of JT-60SA Project
- 3. Status of BA activities at Rokkasho

Broader Approach (BA) comprises three Projects

- 1) Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF/EVEDA)
- 2) International Fusion Energy Research Center (IFERC),
 - a) DEMO Design and R&D coordination Center
 - **b)** Computational Simulation Center
 - c) ITER Remote Experimentation Center
- 3) Satellite Tokamak Programme

Participation to upgrade of JT-60 Tokamak to JT-60SA and its exploitation.

Management Structure for Broader Approach

Status of JT-60SA Project

JT-60SA (Super Advanced) project

- A combined project of the ITER Satellite Tokamak Programme of EU-JA Broader Approach and the Japanese national program.
- Contribute to the early realization of fusion energy by addressing key physics issues in ITER and DEMO.

JT-60SA tokamak overview

- Superconducting TF and PF (CS&EF) coils.
- Low aspect ratio (A=2.5), Ip = 5.5 MA, Bt = 2.25 T.
- All plasma-facing-components will be water-cooled (@40°C).
- Compatible with Remote Handling maintenance (divertor cassette).

•A unique superconducting tokamak (except for ITER) capable of operating in the equivalent break-even regime.

EU-JA sharing of components

In-kind contributions for construction and financial contributions for exploitation are shared by EU and JA.
 Naka site

Superconducting Magnet System

- 18 TF coils, a CS with 4 modules, and 6 EF coils.
- Conductors are cooled by a forced-flow of supercritical helium.
- High-Temperature-Superconducting current leads will be used for all SC magnets to reduce cryogenic loads.

Magnetic energy in TF coils: 1.5 GJ Maximum field in TF coils: 5.8 T CS peak field: 8.9 T Total weight of magnet system ~ 700 tons (4K)

Superconducting Conductors

Coil	<u>TF</u>	<u>CS</u>
Type of strands	NbTi	Nb3Sn
Operating current (kA)	25.7	20
Nominal peak field (T)	5.65	8.9
Operating temperature (K)	4.9	5.1
Number of SC strands/Cu strands	324 / 162	216 / 108
Local void fraction (%)	32	34
Cable dimensions (mm)	18.0 x 22.0	Ф21.0
Central hole (id x od) (mm)	non	7 x 9
Conductor ext. dimensions (mm)	22.0 x 26.0	27.9 x 27.9
Jacket material	SUS316L	SUS316LN
Conductor type	EF-H	EF-L
Conductor type No. of coils	<mark>EF-H</mark> EF3, 4	<mark>EF-L</mark> EF1, 2, 5, 6
Conductor type No. of coils Type of strand	<mark>EF-H</mark> EF3, 4 NbTi	<mark>EF-L</mark> EF1, 2, 5, 6 ←
Conductor type No. of coils Type of strand Operating current (kA)	<mark>EF-H</mark> EF3, 4 NbTi 20.0	<mark>EF-L</mark> EF1, 2, 5, 6 ← ←
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T)	EF-H EF3, 4 NbTi 20.0 6.2	EF-L EF1, 2, 5, 6 ← ← 4.8
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T) Operating temperature (K)	EF-H EF3, 4 NbTi 20.0 6.2 5.0	EF-L EF1, 2, 5, 6 ← 4.8 4.8
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC/Cu strands	EF-H EF3, 4 NbTi 20.0 6.2 5.0 450 / 0	EF-L EF1, 2, 5, 6 ← 4.8 4.8 216 / 108
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC/Cu strands Local void fraction (%)	EF-H EF3, 4 NbTi 20.0 6.2 5.0 450 / 0 34	EF-L EF1, 2, 5, 6 ← 4.8 4.8 216 / 108 34
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC/Cu strands Local void fraction (%) Cable dimensions (mm)	EF-H EF3, 4 NbTi 20.0 6.2 5.0 450 / 0 34 21.8	EF-L EF1, 2, 5, 6 ← 4.8 4.8 216 / 108 34 19.1
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC/Cu strands Local void fraction (%) Cable dimensions (mm) Central hole (id x od) (mm)	EF-H EF3, 4 NbTi 20.0 6.2 5.0 450 / 0 34 21.8 7 x 9	EF-L EF1, 2, 5, 6 ← 4.8 4.8 216 / 108 34 19.1 ←
Conductor type No. of coils Type of strand Operating current (kA) Nominal peak field (T) Operating temperature (K) Number of SC/Cu strands Local void fraction (%) Cable dimensions (mm) Central hole (id x od) (mm) Conductor ex. dimensions (mm)	EF-H EF3, 4 NbTi 20.0 6.2 5.0 450 / 0 34 21.8 7 x 9 27.7	EF-L EF1, 2, 5, 6 ← 4.8 4.8 216 / 108 34 19.1 ← 25.0

TFC conductor

CS conductor

EF-L&H conductor

Vacuum Vessel

Torus outside diameter	9.95 m
Torus inside diameter	2.86 m
Torus height	6.63 m
Inner/outer shell thickness	18 mm
Main vessel body weight	~150 ton
One turn resistance	~19 μΩ

- VV : 18 toroidal sectors of SS316L with low Co to reduce activation levels.
- Boric acid water between shells is used for neutron shielding.
- The vacuum vessel can be baked up to 200°C using nitrogen gas. The temp. of the vacuum vessel in normal operation is kept at ~50°C.

Lower Divertor

Outer Baffle: 0.3~1MW/m²

Bolted CFC and Graphite tiles

Cover for Pipe

Connection: 0.3MW/m²

- The design is optimized for a higher triangularity ($\delta_x \sim 0.5$) in LSN.
- Vertical targets, with a V-shaped corner for the LFS one.
- Initially bolted CFC (+partial monoblock) => Full monoblock.
- Cryopanels beneath the cassette for pumping.
- Compatible with future Remote Handling maintenance.

R&D : CFC monoblock

12 full-size mock-ups produced in one furnace

About half of mock-ups satisfy the performance

Test at JEBIS up to 15MW/m²

(°C)

In-vessel coils

- Fast Position Control coil: vertical and horizontal position control.
- Error Field Correction coil: compensate non-axisymmetric field (incl. Resonant Magnetic Perturbation). Slow response.
- RWM Control coil: for fast feedback control of RWM; 3 (poloidal)x6 (toroidal) = 18 coils.

RWM control coils

- Sustainment of high β_N (>~3.5), above the no-wall limit, is one of major targets of JT-60SA, and requires control of Resistive Wall Mode (RWM) as well as conducting shell (stabilizing plate).
- Efficient stabilization of RWM is expected with present design.
- Using co and counter NBI, stabilization of RWM by plasma rotation will also be studied.

Heating and Current Drive systems

Variety of heating/current-drive/ momentum-input combinations

NB: 34MWx100s

Positive-ion-source NB 85keV 12units x 2MW=24MW COx2u, 4MW CTRx2u, 4MW Perpx8u, 16MW

Negative-ion-source NB 500keV, 10MW Off-axis for NBCD

ECRF: 110GHz, 7MW x 100s

- 9 Gyrotrons,
- 4 Launchers with movable mirror
- >5kHz modulation

- Tokamak assembly will start in 2012 on the JAEA Naka site.
- The first plasma is foreseen in 2016.

- JT-60SA is planned to be upgraded according to the phased equipment plan.
 Divertor, ECRF, P-NB, Remote Handling
- Exploitation within the BA period will aim at the initial research phase
- Physics experiment to be defined in the *JT-60SA Research Plan*.

	Phase	Expected Duration		Annual Neutron Limit	Remote Handling	Divertor	P-NB	N-NB	ECRF	Max Power	Power x Time				
Initial	phase I	1-2 y	н	-	- R&D -	LSN 10MW			1.5MW x100s	23MW					
Phase	phase II	2-3y	D	4E19		partial monoblock	Perp.		+ 1.5MW x5s	33MW	NB: 20MW x 100s 30MW x 60s				
Integrated	phase I	2-3y	D	4E20						LSN	13MW Tang.	10MW		271414/	ECRF: 100s
Research Phase	phase II	>2y	D	1E21		monoblock	7MŴ		7MW	3710100					
Extended Research Phase		>5y	D	1.5E21		DN	24MW			41MW	41MW x 100s				

Typical plasma parameters

lp=5.5MA, Double Null

112

Parameter	DN Low A	ITER-shape	$High{-}\beta_{N} full{-}CD$
Plasma Major Radius R (m)	2.96	2.93	2.97
Plasma Minor Radius a (m)	1.18	1.14	1.11
Plasma Current I _p (MA)	5.5	4.6	2.3
Toroidal Field B_o (T)	2.25	2.28	1.71
Plasma Aspect Ratio A	2.5	2.6	2.7
Plasma Elongation κ_x , κ_{95}	1.95, 1.77	1.81, 1.70	1.92, 1.83
Plasma Triangularity δ_x , δ_{95}	0.53, 0.42	0.43, 0.33	0.51, 0.41
Shape Parameter S	6.7	5.7	6.9
Safety Factor q ₉₅	3.2	3.2	5.7
Plasma Volume (m ³)	132	122	124
Heating Power (MW)	41	34	37
Assumed HH-factor	1.3	1.1	1.3
Normalized Beta β _N	3.1	2.8	4.3
Thermal Energy Confinement Time τ_{E} (s)	0.54	0.52	0.26
Electron Density n _e (10 ²⁰ /m ³)	0.63	0.91	0.50
Greenwald Density n Greenwald (10 ²⁰ /m ³)	1.3	1.1	0.59
Normalized Plasma Density n _e /n _{Greenwald}	0.5	0.8	0.86
Flattop Flux (Vs) (li=0.73-0.75)	~9	~17	- (full CD)
Bootstrap current fraction	0.29	0.30	0.66
Discharge flattop duration (s)	100	100	100

ITER-shape: same κ and δ but lower A than ITER.

Operation scenario for 5.5 MA DN

Plasma parameters in design scenarios

Scenario	#1	#2	#3	#4	#5	#6 (note)
	Full Current Inductive DN, 41MW	Full Current Inductive SN, 41MW	Full Current Inductive SN,30MW High density	ITER like Inductive	High β _N full-CD	High β _N 300s
Plasma current, <i>I</i> p (MA)	5.5	5.5	5.5	4.6	2.3	2.0
Toroidal field, <i>B</i> t (T)	2.25	2.25	2.25	2.28	1.71	1.41
q ₉₅	~ 3	~3	~ 3	~ 3	~5.7	~ 4
<i>R/a</i> (m/m)	2.96/1.18	2.96/1.18	2.96/1.18	2.93/1.14	2.97/1.11	2.97/1.11
Aspect ratio A	2.5	2.5	2.5	2.6	2.7	2.7
Elongation, κ_x	1.95	1.87	1.86	1.81	1.92	1.91
Triangularity, δ_x	0.53	0.50	0.50	0.41	0.51	0.51
Normalised beta, β_N	3.1	3.1	2.6	2.8	4.3	3.0
Electron density, $\overline{n_e}$ (10 ¹⁹ m ⁻³)	6.3	6.3	10.	9.1	5.0	2.0
P _{add} (MW) (N-NB/P-NB/EC)	41 (10/24/7)	41 (10/24/7)	30 (10/20/0)	34 (10/24/0)	37 (10/20/7)	13.2 (3.2/6/4)
Thermal confinement time, $ au_{E,th}$ (s)	0.54	0.54	0.68	0.52	0.23	0.3
Н _{Н98 (v.2)}	1.3	1.3	1.1	1.1	1.3	1.3
V _i (V)	0.06	0.06	0.15	0.12	0	0.02
Available flux at flat-top (Wb)	<~9	<~9	<~9	<~17	-	>~8
Neutron production rate, S _n (n/s)	1.3×10 ¹⁷	1.3×10 ¹⁷	6.5×10 ¹⁶	6.6×10 ¹⁶	4.5×10 ¹⁶	1.2×10 ¹⁶

NOTE: Scenario 6 is, for the time being, to be considered a "to be assessed" scenario whereby the verification that it can be executed, within the limits set by the requirements from scenarios 1-5, is performed and that no extra requirements to the initial facility installation is required.

- ITER- and DEMO- relevant plasma regimes in terms of $\beta_{\text{N}},\,\rho_{\text{p}}{}^{*}$ and $\nu^{*}.$
- High β_N with highly shaped configurations (S~7).

High β_N steady-state operation

- $-I_{BS}$ =1.53MA, I_{NB} =0.661MA, I_{EC} =0.069MA $-P_{PNB}$ =20MW, P_{NNB} =10MW, P_{EC} =7MW
- Off-axis NBCD with N-NB \rightarrow Reversed shear with q_{min} ~1.6 at r/a~0.5.

High β_N steady state operational space

- Assuming profiles, full-CD (I_{OH} =0MA) solutions are evaluated by ACCOME with varying I_p and f_{GW} . Full power injection is assumed.
- Full CD at 2.3 MA (with $f_{GW} \sim 0.85$) to 2.9 MA (with $f_{GW} \sim 0.55$) can be expected with moderate H_{H} of 1.3.
- Here \textbf{q}_{95} is around 5.5, \textbf{q}_{min} ~1.6 ρ_{min} ~0.5 0.55.
- $I_p = 2.9$ MA at $B_t \sim 2.16$ T.
- f_{BS} up to >~70% is expected with DEMO relevant β_{N} .

JT-60SA allows

- dominant electron heating, scan of power ratio to electron
- high power heating with low central fueling
- high power heating with low external torque input (incl. scan of rotation)

ECRF (110GHz, 7MW)

- N-NB (500keV, 10MW)
 - => Electron Heating dominant Low Particle input Low Torque input
- P-NB (85keV, 24 MW) => Ion Heating dominant
- Perp-NB & balanced CO/CTR-NB => low torque input (torque input scan)

H-mode and ELMs

- ITER-relevant high density plasma regimes well above the H-mode power threshold is possible
 Will contribute to ITER H-mode operations towards Q=10, w.r.t. L-H transition, Pedestal Structure and Hmode confinement (incl. compatibility with radiative divertor, RMP, etc.)
- •ELM mitigation will be studied by RMP, pellet and high δ operation.

- JT-60SA allows exploitations of
 - NB Current Drive studies (incl. off-axis NBCD),
 - AE mode stability & effects on fast-ion transport,

- Interactions between high energy ions and MHD instabilities with 10MW high energy (500keV) N-NB.

Guide Heat and particle control with divertor

- The peak heat flux can be suppressed within the mono block capability (15 MW/m²) by gas puffing for the maximum heating power (41 MW).
- $n_{e,sep} = 2.8 \times 10^{19} \text{ m}^{-3}$ is acceptable in a 5.5MA operation ($n_{e,ave} \sim 1 \times 10^{20} \text{ m}^{-3}$ at f_{GW} =0.8).
- A lower $n_{e,sep}$ of 1.7x10¹⁹ m⁻³ ($q_{peak} = 8.6 \text{ MW/m}^2$), compatible with lower I_p plasmas, is obtained with impurity seeding in the divertor region.

Divertor condition can be controlled from attached to detached conditions with constant main plasma density with changing pumping speed (0-100 m³/s) by 8 steps.

Extended Research Phase:

Installation of the metallic divertor targets and first wall together with an advanced shape divertor will be conducted based on progress of the research in the world tokamaks including ITER.

Integrated Research Phase:

The material of the divertor target and the first wall is now considered to be carbon before achievement of the JT-60SA's main mission of the high- β steady-state.

However, possibility of replacement to metallic materials will be discussed based on the results in JET and ASDEX-U.

Replaceable Divertor Cassette

High Integrated Performance for DEMO

'Steady-state sustainment
of integrated performance
required for DEMO' has not
been achieved yet.
=>
the goal of JT-60SA

Key points: Understanding of highly self-regulating system (linked p(r),j(r), Vt(r)) and establishment of control scenarios with minimum actuators.

PF conductor

manufacturing building

Manufacturing activities

Prototype of VV and welding test at manufacturing factory

• Manufacturing activities have commenced with contracts according to the PAs.

- The JT-60SA research plan is under development to define research objectives and strategy, to be consistent with the phased equipment plan.
- Needs to plasma actuators and diagnostics would be taken into account in the detailed design.
- Joint work between JA and EU has just started, based on the draft research plan developed by JAEA and JA universities.

Contents of IT 6004 Decearch Dala droft (v2.0)		research issues	initial phase I	initial phase II	integ. phase I	integ. phase II	extended phase
Contents of J1-60SA Research Pain draft (V2.0 Contents	<i>י</i>	controllability of plasma position and shape up to full current operation safety shut down at heavy collapse,					
		reliable plasma startup					
		volt-second consumption					
1. Introduction	4						
		Wall conditioning in SC device					
2. Mission, Plasma Regimes and Research Phases.	5	loop					
		Validation of diagnostic data					
3 Operation Regime Development	20	Introduction of real-tiem diagnostics					
Stoperation regime 2 of tropment		H-mode threshold power in hydrogen plasma					
4. MHD Stability Physics and Control.	31	ELM mitigation using magnetic perturbation					
		Advanced real-time control					
5. Transport and Confinement	36	demonstration of ITER standard operation scenario					
C Web France Brotels Debasies		ITER hybrid operation scenario					
6. High Energy Particle Benavior.	44	ITER steady-state operation scenario					
7 Pedestal and Edge Characteristics	48	Quantification of plasma response to actuators					
		Experimental simulation of burn control for ITER DT expeiment and DEMO					
8. Divertor, Scrape Off Layer and Plasma-Material Interaction	53	Radiated divertor study					
	1011	accomplishment of a main mission goal					
9. Appendix	59	demonstration of DEMO scenario					
		A plan for operation	ation s	cenario	o devel	opmen	t 32

- JT-60SA is characterized by
 - High I_p (5.5MA), highly shaped (κ_x ~1.95, δ_x ~0.53) and low A (~2.5).
 - High heating power (41 MW including 10 MW of NNBI) for 100 s.
 - All plasma-facing-components with water-cooled, including CFC monoblock divertor target.
- JT-60SA will contribute to resolving key physics issues in ITER and DEMO. In particular, high β_N (> no-wall limit) full non-inductive steady-state operation is one of the major targets.
- Construction of JT-60SA has been started, toward the first plasma in 2016
- Development of the JT-60SA Research Plan has been started jointly by EU and JA physicists.

Status of BA activities at Rokkasho ~ IFMIF/EVEDA and IFERC ~

International Fusion Material Irradiation Facility (IFMIF)

To characterize the fusion materials under the 14MeV neutron irradiation necessary for DEMO design and licensing

IFMIF/EVEDA Project – Accelerator Development

Rokkasho from the sky

New Research Center in Rokkasho (IFERC)

