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NSTX Upgrade will contribute strongly to toroidal plasma science 
and preparation for a fusion nuclear science (FNS) program

•NSTX:  
– Providing foundation for understanding ST physics, performance

•NSTX Upgrade:
– Study high beta plasmas at reduced collisionality

• Vital for understanding confinement, stability, start-up, sustainment
– Assess full non-inductive current drive operation

• Needed for steady-state operating scenarios in ITER and FNS facility
– Prototype solutions for mitigating high heat, particle exhaust

• Can access world-leading combination of P/R and P/S
• Needed for testing integration of high-performance fusion core and edge

•NSTX Upgrade contributes strongly to possible next-step STs:
– ST Fusion Nuclear Science Facility (FNSF)

• Develop fusion nuclear science, test nuclear components for Demo
• Sustain Wneutron ~ 0.2-0.4 1-2MW/m2, τpulse = 103 106s

– ST Plasma Material Interface Facility (PMIF)
• Develop long-pulse PMI solutions for FNSF / Demo (low-A and high-A)
• Further advance start-up, confinement, sustainment for ST
• High Pheat/S ~1MW/m2, high Twall, τpulse ~ 103s

FNSF (ST-CTF)

PMIF (NHTX)

NSTX

NSTX-U
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NSTX Upgrade will address many 
important questions for fusion

How does confinement 
vary with normalized 

temperature, pressure?

ITER-like 
scaling

ST-FNSF 

?

constant 
q, β, ρ∗

NSTX Upgrade

NSTX

Improved LLD, capillary 
porous system, other…

Can we manage the power  
& particle exhaust of high-

performance plasmas?

New divertor poloidal field coils

Can we create, sustain, and 
control high β, low li ST 

plasmas without induction?

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130

q profile control in 100% 
non-inductive plasma 
using mix of existing and 
additional NBI sources

IP ~ 700kA, BT=0.55T,  βN = 6.2, βT = 14%
H98y2 = 1.2, fNICD = 100%, f∇p = 73%

Normalized electron collisionality
reduction from higher temperature 
from higher field, current, heating

νe* ∝ ne / Te
2
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Access to higher field and current is needed to understand  
scaling of ST confinement, implications for next-steps

• To achieve: 3-6â reduction in collisionality
– Field and current must double, heating power P = 6MW increases to 10-16MW
– Also require 3-5ä increase in pulse duration for profile equilibration

• For scaling from NSTX to NSTX-U assume:
– n / nGreenwald decreases 30% (~1 ~0.7) via planned density control
– Toroidal, normalized beta held ~constant: increase -20% (ITER) to +10% (ST)

ST H-mode: τE ∝ BT
1.2 IP0.6 n0.2 P-0.6

• NSTX (and MAST) energy confinement time τE scales much more strongly 
with magnetic field and more weakly with current than ITER scaling

NSTX Data

ITER H-mode: τE ∝ BT
0.15 IP0.9 n0.4 P-0.7
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Upgrade 2nd NBI injecting at larger Rtangency will greatly
expand performance and understanding of ST plasmas

• Improved NBI-CD and plasma performance
– Higher CD efficiency from large RTAN
– Higher NBI current drive from higher PNBI 
– Higher βP, fBS at present H98y2  ≤ 1.2 from higher PHEAT
– Large RTAN off-axis CD for maintaining qmin > 1
– Achieve 100% non-inductive fraction (presently < 70%)
– Optimized q(ρ) for integrated high τE, β, and fNI

• Expanded research flexibility by varying:
– q-shear for transport, MHD, fast-ion physics
– Heating, torque, and rotation profiles
– β, including higher β at higher IP and BT
– Fast-ion f(v||,v^) and *AE instabilities

• 2nd NBI more tangential – like next-step STs
– Peak divertor heat flux, SOL width

TRANSP simulation
Use 4 of 6 sources
ENBI=90keV, PINJ = 8MW
H98y2=1.2, fGW=0.95

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130

ρpol

IP ~ 700kA, BT=0.55T,  βN = 6.2, βT = 14%
H98y2 = 1.2, fNICD = 100%, f∇p = 73%

Present NBI
RTAN=50,60,70cm

New 2nd NBI
RTAN=110,120,130cm

• q(r) profile variation and control very important for global 
stability, electron transport, Alfvénic instability behavior
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Upgrades provide major step along ST development path 
(next factor of 2 increase in current, field, and power density)

2.5210.5Toroidal Field (T)
40-60, 0.8-1.240, 0.720, 0.4*10, 0.2*P/R, P/S (MW/m,m2)

≥ 1.5≥ 1.7≥ 1.5≥ 1.3Aspect Ratio = R0 / a

NSTX NSTX Upgrade Plasma-Material 
Interface Facility

Fusion Nuclear 
Science Facility

Plasma Current  (MA) 1 2 3.5 10

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

TF OD = 20cm TF OD = 40cm

Present CS New CS New 2nd NBI
(RTAN=110, 120, 130cm)

Outline of new center-stack (CS) 

Present NBI
(RTAN= 50, 60, 70cm)
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Higher field BT=1T from new CS + 2nd NBI would enable
access to wide range of 100% non-inductive scenarios

• New CS + present NBI-CD + fast wave:
– Study confinement scaling vs. IP and BT

• Limited range of auxiliary power levels
– 100% non-inductive for 1-1.5s (~1 τCR)

• NBI duration limited to 2s at 7.5MW 
• Vary qmin with density (CD efficiency ∝ Te/ne)

• Addition of 2nd NBI would enable:
–Study confinement scaling vs. IP and BT with:

• Full range of auxiliary power available
• Assured access to high-β at reduced ν*

– 100% non-inductive for 3-4 τCR relaxed J(r)
• 10MW NBI available for 5s
• Control qmin & q-shear w/ NBI source, ne, & BT
• Study long-pulse NTM stability with q > 2

–Study compatibility of high-β w/ PMI solutions 

IP = 0.8-1.2MA, H98y2 = 1.2-1.4, βN = 4.5-5, βT = 10-12%, 4MW RF

RTAN [cm]
__________________ 

50,  60, 70

ne / nGreenwald

0.95
0.72

IP = 0.95MA,  H98y2 = 1.2, βN = 5, βT = 10%, 4MW RF

RTAN [cm]
__________________ 

50,  60, 70, 130
60,  70,120,130
70,110,120,130
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For NBI IP ramp-up, more tangential 2nd NBI has 3â
lower power loss than present NBI at low IP = 400kA

Present NBI

New 2nd NBI

• 20% of power of new 
2nd NBI lost
–Absorb 4 of 5 MW (80kV)

2nd NBI can efficiently heat 400kA HHFW-driven ramp-up plasma

• 60% of power of 
present NBI lost
–Absorb 2 of 5 MW (80kV)
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Non-inductive ramp-up to ~0.4MA possible with RF + new CS, 
ramp-up to ~1MA possible with new CS + more tangential 2nd NBI

• High field ≥ 0.5T needed for efficient RF heating
• ~2s duration needed for ramp-up equilibration
• Higher field 0.5 1T projected to increase electron 

temperature and bootstrap current fraction 

Ramp to ~0.4MA with fast wave heating:                     Extend ramp to 0.8-1MA with 2nd NBI:

• Benefits of more tangential injection:
• Increased NBI absorption = 40 80% at low IP
• Current drive efficiency increases:  ä1.5-2

• New CS needed for ~3-5s for ramp-up equilibration
• Higher field 0.5 1T also projected to increase electron 

temperature and NBI-CD efficiency

Time (s)

Present NBI
More tangential 

2nd NBI

TSC Simulations – C. Kessel
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Range of IP = 2MA free-boundary equilibria generated to 
support design of TF and PF coil support structures

32 free boundary equilibria â 3 OH conditions = 96 cases

• NOTE:  Negative “squareness” boundary shape cases are included:
• More shaping flexibility/capability than in present NSTX (requires PF4 usage)
• Expect could be important for controlling edge stability (NSTX will test in FY2010)

• With coil/machine protection system + nominal operating currents, analysis 
indicates enhanced vertical field coil structure can support above scenarios

• Aspect ratio A:        1.6 – 1.9
• Internal inductance li: 0.4 – 1.1
• Elongation κ:           2.1 – 2.9
• Triangularity δ:        0.2 – 0.7
• Squareness ζ:      -0.15 – 0.12
• Magnetic balance: -1.5 – 0cm
• IOH: zero and +/- supply limit

– For computing PF needed for 
cancellation of OH leakage flux 

• Pressure variation: βN = 1, 5, 8

Free boundary equilibrium parameters:
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Upgrade provides substantial increase in device performance

• Center-stack radius increased 13cm A=1.3 1.5
• Available OH flux increased 3ä, 3-5ä longer flat-top
• IP increased 2ä, BT increased 2ä at same major radius
• Plasma stored energy increased up to 4ä (0.25 1MJ)

Relative performance of 
Upgraded NSTX vs. Base:

 TF, OH & Plasma Current Waveforms
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TF current per turn
OH current per turn

Present NSTX 
(BT = 0.6T waveforms)

NSTX Upgrade 
(BT = 1T waveforms)

Base NSTX

NSTX Upgrade

R0 [m] 0.854 0.934

Min. aspect ratio 1.28 1.5

Ip [MA] 1 2

BT [T] 0.55 1

Tpulse [s] 1 5

Trepetition [s] 600 1000

Rcenter_stack =R0-a [m] 0.185 0.315

Rantenna=R0+a [m] 1.574 1.574

Total OH flux [Wb] 0.75 2.1
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NSTX Upgrade will extend normalized divertor and
first-wall heat-loads much closer to FNS and Demo regimes

Device heat-flux parameters

DIII-D

FDF (III)

NSTX-U
NSTX-U (21MW)

FNST (II)

FNST (II)

ITER
JET (DT)

JT-60SA

KSTAR

EAST

ARIES-AT

FNST (IV)

FNST (I) / ST-PMIF
C-Mod

FDF (II)

FDF (I)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 20 40 60 80

Pheat / R [MW/m]

Pheat /S
[MW/m2]

NSTX
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A combination of advanced PMI solutions will likely be 
required to manage the power exhaust of NSTX Upgrade

• The PDD operating regime and 
other PMI solutions will be 
challenged in NSTX-U due to:

– 2-3ä higher input power
– 30-50% reduction in Greenwald fraction
– 3-5ä longer pulse duration, leading to 

substantial increase in Tdivertor

• NSTX and NSTX-U will test the 
compatibility of high flux expansion, 
PDD, and a liquid lithium divertor
(LLD) at higher power/energy

• High divertor heat flux can be reduced in 
NSTX with partially detached divertor (PDD)

6MW NBI

LLD-I 
80° SEGMENT

• NSTX has demonstrated the formation of 
high flux-expansion “snowflake” divertor

• NSTX-U high flux expansion:

fexp = 32

Improved LLD, capillary 
porous system, other?

• NSTX LLD
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Divertor PF coil system for NSTX Upgrade includes additional 
coil to enhance control of power exhaust (and support CHI)

Additional coil added  = PF1C

• Combination of PF1A,B,C + PF2 enables 
flux expansion variation with fixed 
X-point height and strike-point location:

PF1AL

PF1BL

PF2L

PF1CL

Possible location of liquid lithium divertor in Upgrade

fexp = 9 fexp = 12 fexp = 19

Outboard poloidal flux expansion 
factor fexp ≡ |∇ψ|mid-plane / |∇ψ| strike-point
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Center-stack Upgrade divertor coil set supports
conventional, snowflake, and X/Super-X divertor options

• Implication:  CS divertor coil location and configuration now finalized

Possible location for cryo-pumps?

Conventional Snowflake X/Super-X

•X/Super-X requires in-vessel PF coils which are NOT part of Upgrade project
• Design/analysis of Upgrade divertor is collaborative effort (ORNL, LLNL, UT, PPPL)

• NSTX-U divertor design will be strongly influenced by NSTX LLD results
– To be prepared for possible favorable results from LLD, NSTX is initiating a conceptual 

design study of heated inboard Mo divertor tiles to support test of high-δ LLD-pumped plasma
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NSTX NSTX Upgrade research goals strongly support 
research actions identified in ReNeW ST Thrust 16:

1. Develop MA-level plasma current formation and ramp-up
• CHI start-up and fast-wave ramp-up in NSTX, NBI ramp-up to ~1MA in Upgrade

2. Advance innovative magnetic geometries, first wall solutions (liquid metals)
• “Snowflake” divertor, detachment, solid/liquid PFCs in NSTX and Upgrade

3. Understand ST confinement and stability at fusion-relevant parameters
• Understand μ-turbulence and AEs in NSTX, extend to lower ρ* and ν* in Upgrade

4. Develop stability control techniques for long-pulse disruption-free operation
• Advanced mode-ID and rotation control in NSTX, q(r) optimization in Upgrade

5. Employ energetic particle beams, plasma waves, particle control, and core fueling 
techniques to maintain the current, control plasma profiles

• High fnon-inductive ≤ 70% in NSTX (FW+NBI+BS), 100% NI + J(r) control in Upgrade

6. Develop normally-conducting radiation-tolerant magnets for ST applications
• Design and utilize higher-field TF magnet (0.5T 1T) in Upgrade

7. Extend ST performance to near-burning-plasma conditions 
• NSTX and Upgrade + tokamak program provide physics basis for next-step STs


