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Coil for plasma shaping
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Key Components of Plasmas Generated
In a Tokamak
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Outline

®* How to image flows and the current profile?
Polarization interferometer
Spatial heterodyne system

* Applications
Doppler flow measurements (DIIID)
Magnetic field pitch angle map (TEXTOR)
* Summary and Outlook




Key Components of Plasmas Generated
In a Tokamak

Col for plasma shaping Transformer coil

Toroidal field coils .




Hurricane-like Flows in the Edge of Tokamaks

Edge used for material migration: balance of material and redeposition inner
and outer divertor

Current edge flow measurement diagnostics include
Doppler spectroscopy - single points - poor spatial resolution
Mach probe - Intrusive and of limited spatial reach in plasmas

Flows are known to suppress turbulence: improves plasma performance

Comparison coupling mechanism between the core plasma rotation and the
edge flows.

Experimental validation of arrays of edge modeling simulations required

A comprehensive picture of edge flows calls for an imaging technique




Standard Waveplate: Overview

Optical axis in the plane of incidence
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Recall a Simple Polarization Interferometer
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e These interferometers have higher throughput
e Allow for 2D spectral imaging
e Requires multiplexing independent images to extract the phase shift




Shearing Polarization Interferometer: Description

Insert shearing (Savart) waveplate:

Savart plate:
Polarizer delay ¥y

Incoming radiation
l
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Delay plate Polarizer and Filter

Imaging lens

S = I[1 + ¢ cos(ky,y+)]




Shearing Polarization Interferometer: Description

Insert shearing (Savart) waveplate:

Savart plate:
Polarizer delay ¥y
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Delay plate Polarizer and Filter Imaging lens
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Generation of Spatial Fringes using a Savart Plate

Optical path difference Polarizer  Focusing lens

- Thickness . . l/ /
\ Focal plane

The ray separation generates an angle-dependent path difference:
fringes enable spatial modulation




Interpreting the Interferogram

¢ The mean interferometer signal gives the line integrated brightness:

So = /Io(r)dl

® The fringe visibility yields the temperature:

<€ >= ffoﬁ(r)dl where £(r) = e~ T(r)/Terystal

®* The change in interferometer phase gives line integrated Doppler shift:

op (i
p /Iof(r) - ldl




Temperature and Doppler shift of Spectral lines
are Encoded on the Interferogram

m Interferogram
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® The visibility tracks the line broadening (temperature)
® The relative phase shift is proportional to the line shift (flow)




Temperature and Doppler shift of Spectral lines
are Encoded on the Interferogram

m Interferogram
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® The visibility tracks the line broadening (temperature)
® The relative phase shift is proportional to the line shift (flow)




Temperature and Doppler shift of Spectral lines
are Encoded on the Interferogram

# Fourier Transform s Interferogram
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® The visibility tracks the line broadening (temperature)
® The relative phase shift is proportional to the line shift (flow)




Outline

* Applications
Imaging of Doppler flows (DIIID)




Modeling CIll @ 465nm Optical Coherence:
Fourier Transform of the Line Shape

Measured ClI| Multlplet Calculated contrast
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Choosing a waveplate with appropriate group delay to give sensitivity to high ion temperature
® Trade-off between group delay and contrast
® Larger wave delay improves velocity sensitivity

Wavelength (Angstroms)




Measured CIll Brightness Profile is Localized at
the Edge of the Plasma

DIIID cross-section
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Phase Reversal Consistent with the Reversal
of the Toroidal Current(ip)

Phase Shift Images
Forward Current Reverse Current




Phase Reversal Consistent with the Reversal
of the Toroidal Current(ip)

Phase Shift Images
Forward Current Reverse Current

Region of Interest




Phase Reversal Consistent with the Reversal
of the Toroidal Current(ip)

Phase Shift Images _ _
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Reversal of flow agrees with other standard diagnostics




Divertor Flow Imaging Using CIlll Emission

POVRAY




Divertor Flow Imaging Using CIlll Emission




Divertor Flow Imaging Using CIlll Emission
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Complex flow pattern structure requires a 3D unfolding!




Movie Showing the Time Evolution of Divertor Flow
Pattern

Raw Image Demodulated Image: Phase shift

#140570 Exposure 50 ms




Movie Showing the Time Evolution of Divertor Flow
Pattern

Raw Image Demodulated Image: Phase shift
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Reconstructed Brightness and Flow Profiles Conform with

Equilibrium Surfaces
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Short Summary/Outlook

¢ First 2D flow pattern imaging using a polarization interferometer

¢ Preliminary results show evidence of flow reversal with plasma
current consistent with standard diagnostics

¢ Divertor imaging show complex flow structure of great interest for
modelers

e Comparison with array of edge modeling codes

® Target multiple species for wider spatial coverage on NSTX

e Extension to Laser Induced Fluorescence- and Gas Puffing- assisted
flow measurements are under investigation.




Key Components of Plasmas Generated
In a Tokamak




Motional Stark Effect enables Measurements of
the Magnetic Field Pitch Angle

Injected beam atoms feel induced
electric field in frame of the beam

Doppler shift from thermal H,
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Shearing Polarization Interferometer Used to Encode
Information of the Stark Multiplet
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Image pair yields 4x the polarization angle
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* Applications

Magnetic field pitch angle map (TEXTOR)




Applications to Measuring the Magnetic Pitch Angle:
TEXTOR Viewing G
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Polarized Emission Generates Interference
Fringes

Frame 1 Frame 2

Polarized Stark multiplet =» fringes

Unpolarized background =» no fringes

shington DC -13/02/2010




Interference Pattern: Beam Footprint Interferogram
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Image pair phase difference yields 4x polarization
angle: Results
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2D Field Pitch Angle Map: Experiment and Simple Model

Spatial resolution Radial ~3mm Vertical ~15-20mm
Polarization angle resolution rms ~0.5 deg

Model Pitch Angle

Measured Pitch Angle
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Discrepancies are due to imperfections ot coupling prism

J. Howard, A. Diallo, R. Jaspers, and J. Chung Plasma and Fusion Research, 5, S1010,(2010)




Beam Doppler Phase Shift:
Experiment vs Model
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Summary and Next Steps

v Imaging provides a clear advantage over standard single point
measurements

v First 2D pitch angle map agrees with a simple model
* Next step: Applications of this imaging technique to resolve coherent events

* More work is required to obtain the flux function from the pitch map




Backup Slides




Direct Measurement of the Flux Function

Top view
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2D pitch angle mapping enables the reconstruction
of the magnetic flux function and the current profile.




omparison wi arge Exchange
Recombination Profile (CVI)

. . Charge exchange recombination profile
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Sign reversal is consistent with standard measurements




Implementation of Doppler Imaging Instrument
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