Imaging of Plasma Flows and Current Density in Tokamaks

Ahmed Diallo

Princeton Plasma Physics Lab

In Collaboration with J. Howard¹, M. Creese¹, S. Allen², R. Ellis², W. Meyer², R. Jaspers³, J.Koning³, J. Chung⁴, R. Boivin⁵, M. Van Zeeland⁵ ¹ Plasma Research Laboratory, Australian National University ² Lawrence Livermore National Lab, CA ³ FOM & TEXTOR, Germany ⁴ KSTAR, Korea ⁵ General Atomics DIIID, CA

APS- April Meeting 2010 Washington DC -13/02/2010

Tokamak Schematic

http://www.bmbf.de/en/php 2270.

Key Components of Plasmas Generated in a Tokamak

- How to image flows and the current profile?
 - Polarization interferometer
 - Spatial heterodyne system
- Applications
 - Doppler flow measurements (DIIID)
 - Magnetic field pitch angle map (TEXTOR)
- Summary and Outlook

Key Components of Plasmas Generated in a Tokamak

Hurricane-like Flows in the Edge of Tokamaks

- Edge used for material migration: balance of material and redeposition inner and outer divertor
- Current edge flow measurement diagnostics include
 - Doppler spectroscopy single points poor spatial resolution
 - Mach probe Intrusive and of limited spatial reach in plasmas
- Flows are known to suppress turbulence: improves plasma performance
- Comparison coupling mechanism between the core plasma rotation and the edge flows.
- Experimental validation of arrays of edge modeling simulations required
- A comprehensive picture of edge flows calls for an imaging technique

Standard Waveplate: Overview

Optical axis in the plane of incidence

Recall a Simple Polarization Interferometer

- These interferometers have higher throughput
- Allow for 2D spectral imaging
- Requires multiplexing independent images to extract the phase shift

Shearing Polarization Interferometer: Description

Shearing Polarization Interferometer: Description

Generation of Spatial Fringes using a Savart Plate

The ray separation generates an angle-dependent path difference: fringes enable spatial modulation

Interpreting the Interferogram

• The mean interferometer signal gives the line integrated brightness:

$$S_0 = \int I_0(r) dl$$

• The fringe visibility yields the temperature:

$$<\xi>=\int I_0\xi(r)dl$$
 where $\xi(r)=e^{-T(r)/T_{crystal}}$

• The change in interferometer phase gives line integrated Doppler shift:

$$rac{\delta arphi}{arphi} = \int I_0 \xi(r) rac{ec{v_0}}{c} \cdot \hat{l} dl$$

Temperature and Doppler shift of Spectral lines are Encoded on the Interferogram

- The visibility tracks the line broadening (temperature)
- The relative phase shift is proportional to the line shift (flow)

Temperature and Doppler shift of Spectral lines are Encoded on the Interferogram

- The visibility tracks the line broadening (temperature)
- The relative phase shift is proportional to the line shift (flow)

Temperature and Doppler shift of Spectral lines are Encoded on the Interferogram

- The visibility tracks the line broadening (temperature)
- The relative phase shift is proportional to the line shift (flow)

Outline

• How to image flows and the current profile?

- Polarization interferometer
- Spatial heterodyne system
- Applications
 - Imaging of Doppler flows (DIIID)
 - Magnetic field pitch angle map (TEXTOR)
- Summary and Outlook

Modeling CIII @ 465nm Optical Coherence: Fourier Transform of the Line Shape

Measured CIII Brightness Profile is Localized at the Edge of the Plasma

Phase Reversal Consistent with the Reversal of the Toroidal Current(Ip)

Phase Reversal Consistent with the Reversal of the Toroidal Current(Ip)

Phase Reversal Consistent with the Reversal of the Toroidal Current(Ip)

Divertor Flow Imaging Using CIII Emission

Divertor Flow Imaging Using CIII Emission

$$I = \frac{I_0}{2} [1 + \zeta \cos(\varphi_y + \varphi)]$$

Divertor Flow Imaging Using CIII Emission

$$I = \frac{I_0}{2} [1 + \zeta \cos(\varphi_y + \varphi)]$$

$$\vec{v} \cdot \hat{l} = \frac{\delta \varphi_{max}}{\kappa \varphi_0} c \sim 27 \ km.s^{-1}$$

Complex flow pattern structure requires a 3D unfolding!

Movie Showing the Time Evolution of Divertor Flow Pattern

Raw Image

Demodulated Image: Phase shift

#140570 Exposure 50 ms

Movie Showing the Time Evolution of Divertor Flow Pattern

Raw Image

Demodulated Image: Phase shift

Reconstructed Brightness and Flow Profiles Conform with Equilibrium Surfaces

Short Summary/Outlook

- First 2D flow pattern imaging using a polarization interferometer
- Preliminary results show evidence of flow reversal with plasma current consistent with standard diagnostics
- Divertor imaging show complex flow structure of great interest for modelers
- Comparison with array of edge modeling codes
- Target multiple species for wider spatial coverage on NSTX
- Extension to Laser Induced Fluorescence- and Gas Puffing- assisted flow measurements are under investigation.

Key Components of Plasmas Generated in a Tokamak

Motional Stark Effect enables Measurements of the Magnetic Field Pitch Angle

Injected beam atoms feel induced electric field in frame of the beam

Doppler shift from thermal H_{α}

 $\delta \lambda = \lambda_{\alpha} \frac{\hat{v_b} \cdot \hat{l}}{c}$ Split by Stark effect

$$\Delta \lambda_s = 2.7574 \times 10^{-8} \text{ E [nm]}$$
 where $\text{E} = |\vec{v_b} \times \hat{B}|$

$$ec{B}=ec{B_{arphi}}+ec{B_{ heta}}$$

Measuring the polarization of the $_{n=3}$ multiplet yields the orientation of the internal magnetic field

n=2

Shearing Polarization Interferometer Used to Encode Information of the Stark Multiplet

Outline

• How to image flows and the current profile?

- Polarization interferometer
- Spatial heterodyne system
- Applications
 - Imaging of Doppler flows (DIIID)
 - Magnetic field pitch angle map (TEXTOR)
- Summary and Outlook

Applications to Measuring the Magnetic Pitch Angle: TEXTOR Viewing Geometry

Polarized Emission Generates Interference Fringes

Interference Pattern: Beam Footprint Interferogram

Image pair phase difference yields 4x polarization angle: Results

2D Field Pitch Angle Map: Experiment and Simple Model

Discrepancies are due to imperfections of coupling prism

J. Howard, A. Diallo, R. Jaspers, and J. Chung Plasma and Fusion Research, 5, S1010 ,(2010)

Beam Doppler Phase Shift: Experiment vs Model

Agreement between Doppler shift and model

Summary and Next Steps

✓ Imaging provides a clear advantage over standard single point measurements

- ✓ First 2D pitch angle map agrees with a simple model
- * Next step: Applications of this imaging technique to resolve coherent events
- * More work is required to obtain the flux function from the pitch map

Direct Measurement of the Flux Function

Rewrite $S = B_z + \alpha Br$; Recall $\nabla \times B = \mu_0 J$

$$B_r = \frac{1}{r} \frac{\partial \psi}{\partial z}$$
 and $B_z = -\frac{1}{r} \frac{\partial \psi}{\partial r} \Rightarrow rS = \frac{\partial \psi}{\partial r} - \alpha \frac{\partial \psi}{\partial z}$

Let
$$u = r - z/\alpha$$
, $rS = \frac{\partial \psi}{\partial u} \Rightarrow \int rSdu = \psi(u_2) - \psi(u_1)$

2D pitch angle mapping enables the reconstruction of the magnetic flux function and the current profile.

Comparison with Charge Exchange Recombination Profile (CVI)

Sign reversal is consistent with standard measurements

Implementation of Doppler Imaging Instrument

$$I = \frac{I_0}{2} [1 + \zeta \cos(\varphi_y + \varphi)]$$
$$\varphi = \frac{2\pi B(\lambda)L}{\lambda} \Rightarrow \varphi = \varphi_0 (1 + \kappa \frac{\vec{v} \cdot \hat{l}}{c}) \quad \kappa = \frac{\lambda}{B} \frac{\partial B}{\partial \lambda}_{\parallel \lambda_0}$$

Radial