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Toroidicity-induced Alfvén eigenmodes (TAEs) 
can strongly affect fast ion confinement 

•  Multiple TAEs can be simultaneously destabilized 
–  Possible overlap of many resonances in phase space 
–  Non-linear development into “TAE avalanches” 

•  “Sea of TAEs” expected in ITER: effects on fast ions? 

•  This work investigates: 
–  Dynamics of TAEs in Neutral Beam (NB) heated NSTX 
plasmas 

–  TAE-induced fast ion losses on NSTX 

⇨ increased fast-ion losses 



TAE dynamics and fast ion transport in NSTX (M. Podestà) TTF 2010, Annapolis (MD) 

Outline 

•  Diagnostics and Experimental techniques 

•  TAE dynamics on NSTX 

•  TAE-induced fast ion transport 

•  Summary and outlook 



TAE dynamics and fast ion transport in NSTX (M. Podestà) TTF 2010, Annapolis (MD) 

Outline 

•  Diagnostics and Experimental techniques 

•  TAE dynamics on NSTX 

•  TAE-induced fast ion transport 

•  Summary and outlook 



TAE dynamics and fast ion transport in NSTX (M. Podestà) TTF 2010, Annapolis (MD) 

The National Spherical Torus Experiment, NSTX  

Major radius  0.85 m 

Aspect ratio  1.3 

Elongation  2.7 

Triangularity  0.8 

Plasma current  ~1 MA 

Toroidal field  <0.6 T 

Pulse length  <2 s 
3 Neutral Beam sources 
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High ratio vfast/vAlfven leads to destabilization of 
Alfvenic instabilities over broad frequency range 

This talk: 
Focus on Toroidicity-Induced Alfven Eigenmodes 

Center-stack limited deuterium plasma 
Btor=0.55 T, Ip=0.9 MA 

Major radius  0.85 m 

Aspect ratio  1.3 

Elongation  2.7 

Triangularity  0.8 

Plasma current  ~1 MA 

Toroidal field  <0.6 T 

Pulse length  <2 s 
3 Neutral Beam sources 
PNBI≤ 6 MW, Vinjection ≤ 95 kV 

   1 <vfast/vAlfven < 5 
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Fast ion and mode activity diagnostics on NSTX 

FIDA range 

collection optics 

sightlines 

•  Mirnov coils"
–  Magnetic fluctuations up to 2.5 MHz"

•  5-Channel reflectometer"
-  Mode structure (L-mode)"

•  Fast Ion D-Alpha (FIDA) system 
–  Fast ion profile and spectrum 

through active charge-exchange 
recombination spectroscopy 

–  16 channels, 5cm/10ms/10keV 
resolution 

•  Volume-averaged neutron rate 

Neutral 
Beam 
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Time-domain analysis of Mirnov’s and reflectometer 
signal provides details on fast mode dynamics 

1. Select frequency band from FFT!

2. Band-pass filter raw signal;!
    time windowing over ~5 wave cycles!

3. Get wave amplitude/frequency from!
   peak-to-peak values & peak separation!

•  Mirnov coils"
–  Magnetic fluctuations up to 2.5 MHz"

•  5-Channel reflectometer"
-  Mode structure (L-mode) 
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Experimental scenario: L-mode, center-stack limited 
deuterium plasma with NB heating 

•  Reverse-shear profile, qmin=2.5→1.5 
•  NB power and density varied to afffect 

drive/damping of TAEs 
•  Monotonic profiles allows mode 

structure measurements through 
reflectometry 

Time of interest!
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TAEs with low toroidal mode numbers (n=2→7) are 
observed, with dominant n=2-4 modes 

PNB [MW]!
Neutr. rate [a.u.]!

sh#135388!

n=2!
n=1!

n=3!
n=4!
n=5!
n=6!

TAE!
range!

Other fluctuations observed during large TAE bursts only, e.g. n=1 
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Three TAE “regimes” are (qualitatively) observed, 
with gradual transition from one to the other 

•  Transition between regimes can occur without an abrupt 
change in the NB power 

quasi-stationary! bursts/chirps! avalanches!

PNB [MW]!
Neutr. rate [a.u.]!

sh#135388!
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Time-domain analysis reveals similarity between 
“quasi-stationary” and “bursting/chirping” phases 

Fourier analysis!

Time-domain analysis!ΔT!

•  Amplitude varies, with 
occasional, larger bursts 
–  e.g. @ 274.5ms 

•  Frequency variations within     
+/-1kHz around time-averaged 
value 
–  Fluctuations with time-scale 
ΔT≤0.5ms in plasma parameters? 

–  Frequency sweep range increases 
with injected NB power 

•  No detectable variation of mode 
structure (from reflectometers) 

sh#135388!
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Variations of mode structure can be observed during 
final phase of avalanches 

•  Dynamics may differ for 
different n’s 

•  Reflectometer and magnetics 
do not always track well each 
other at the end of avalanches 

Mode amplitude (reflectometer, time-domain)!

Spectrogram from Mirnov (time-
domain) overlaid to FFT spectrogram!

Black: Mirnov"
Colors: Reflectometer"

Mirnov (Fourier)!

n=3!

n=3!
n=3!

Spectrogram from Mirnov!
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Frequency and wave-number satisfy matching 
conditions for mode coupling during large bursts 

•  Mode evolution from 
time-domain analysis"

•  Assume bilinear 
interactions:"

S’1 ~ < c(n+1,n) Sn+1 Sn >fn=1 

sh#135414!
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Results suggest (enhanced) coupling of TAEs 
mediated by n=1 fluctuation 

sh#135414!
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Sʼ1!

∝S4S3! Signals rescaled!
to their max!

fn=4-fn=3"

•  Mode evolution from 
time-domain analysis"

•  Assume bilinear 
interactions:"

S’1 ~ < c(n+1,n) Sn+1 Sn >fn=1 

•  Reconstructed Sʼ1 
matches well the 
measured n=1 signal"

–  180 degree phase shift"
•  S1 signal decays when"

–  “Pump” amplitude → 0"
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Same “difference frequency” fn=1 for coupling 
between n3-n2, n4-n3, n5-n4, … 

sh#135414!
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Sʼ1!

∝S4S3! Signals rescaled!
to their max!

fn=3-
fn=2"

∝S3S2!

•  Mode evolution from 
time-domain analysis"

•  Assume bilinear 
interactions:"

S’1 ~ < c(n+1,n) Sn+1 Sn >fn=1 

•  Reconstructed Sʼ1 
matches well the 
measured n=1 signal"

–  180 degree phase shift"
•  S1 signal decays when"

–  “Pump” amplitude → 0"
–  Poor frequency match"

What is the fluctuation at fn=1 ?!
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•  Consider n=2-6 
•  Measured frequencies: 

In general, time-averaged FFT spectra are consistent 
with a common TAE frequency in the plasma frame 

flab,n      : mode freq. in lab frame 
f0,pl        : mode freq. in plasma frame 
fDoppler : shift from plasma rotation 

•  fDoppler ~ fn=1   
•  Modes’ location obtained 

from fDoppler and rotation 
profile 

FFT windowing 2ms!

sh#135388!
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•  Max rotation shear and 
max fast ion gradient at 
same location 

–  Both fast ion and torque 
sources are from NB 

•  De-correlation rate: 

–  τdec~50-250µs, comparable 
with time scale of frequency 
sweep 

Sheared plasma rotation may lead to de-correlation 
of TAEs: role in bursts’ dynamics? 

rot. shear!

rotation!

max grad(Nf)!

R @ fDoppler!

mode!
width!

mode!
location!

shear!wave!
number!

sh#135388!
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No detectable fast ion losses are observed during 
bursting/chirping phase 

•  Statistical average over   
~20 events (~10ms) 

•  Mode amplitude and 
frequency follow a regular 
cycle 

•  No evidence of losses from 
neutrons, FIDA 
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Up to ~30% of fast ions can be lost 
during a single TAE avalanche 

sh#135388, fast ions (FIDA, counts)!

avalanche!

 raw neutrons trace"
 neutrons re-sampled"
    on FIDA time base"

•  Fast ion density (FIDA) drops over 
most of minor radius 

•  Loss results in a relaxation of 
the radial gradient → drive for 
TAEs is reduced 

•  Comparable losses measured 
from (volume-averaged) 
neutron rate 
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As expected, fast ion losses from large bursts 
increase with mode amplitude 

•  Dependence looks more-than-
linear, but… 

•  No clear threshold identifiable 
–  Large variations (n’s, frequency, …) 

between different shots 
–  Mode amplitude from Mirnovs @ 

plasma edge; need entire structure? 

(colors indicate 
different shots)!
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Comparison with codes is required for quantitative 
conclusions and extrapolation to other regimes 

•  Dependence looks more-than-
linear, but… 

•  No clear threshold identifiable 
–  Large variations (n’s, frequency, …) 

between different shots 
–  Mode amplitude from Mirnovs @ 

plasma edge; need entire structure? 

(colors indicate 
different shots)!
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     Example: linear analysis with 
NOVA-K + ORBIT can 

reproduce lost fraction vs. 
mode amplitude 
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Summary and outlook 

•  Different TAE regimes observed on NSTX 
–  More “turbulent” character as the fast ion population increases 
–  Evidence of increasing coupling (mediated by n=1 fluctuation) 
as TAE amplitude increases 

–  Possible role of rotation shear? Competition with kinetic 
(phase-space) effects? 

•  Up to ~30% of fast ions lost following TAE avalanches 
–  No evidence of losses during small bursts/chirps 

•  Future experiments dedicated to detailed measurement 
of mode structure evolution 

–  Comparison with M3D-K code planned (plasma rotation 
included) 

–  Will continue “linear” analysis (NOVA-K + ORBIT) 
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Backup viewgraphs 
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Fast ions diagnosed through active charge-
exchange D-alpha spectroscopy (FIDA technique) 

•  Exploit wavelength Doppler shift from cold D-alpha line of 
photons emitted by re-neutralizing fast ions 

–  Distinguish fast-ion features from dominant cold D-alpha emission 
•  Passive views missing the neutral beam for background 

subtraction 

B 

Re-neutralization with 
        injected neutral 

excited re-neutral 

Photon emission 
            n=3→2 

vre-neutral 

vmeas 

Collection optics 

Fast ion 
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FIDA signal results from convolution in energy, pitch 
of fast-ion distribution and response function 

E  [keV] 

v ||
/v

 
v ||

/v
 

v ||
/v

 

F(v||/v ,E) 

W(v||/v ,E) 

F * W 

Einjection •  Measured fast ion signal: 
            s(λ) = ∬ F * W d(v||/v) dE 
       F(v||/v,E) : fast-ion distribution 
       W(v||/v,E | gi) : weight function 
       v||/v : pitch, E : energy, gi: geometry & NB 
    λ : wavelength from Doppler shift formula 

       Eλ=E(λ) : measured photon energy  
•  FIDA density, Nf (∝fast-ion density) 

obtained by integrating spectrum over 
energy Eλ and taking into account local 
neutral density in W 

•  Vertical views: signal weighted toward 
perpendicular velocities 

•  stot=s(λ) + B(λ) : Background B(λ) is 
main source of experimental error E  [keV] 

[Heidbrink, PPCF 49 (2007)] 
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•  Main contributions to background: 
–  Bremsstrahlung, impurity emission 
–  Light from divertor & plasma facing components 
–  Scattered light 

•  Two techniques can be used to measure 
background contribution: 

–  ON/OFF modulation of Neutral Beam 
•  Same views for active/background measurements 
•  Temporal resolution reduced; specific NB waveform 

required 
–  Passive views, toroidally displaced, missing the 

neutral beam for background measurement 
•  Temporal resolution not affected 
•  Number of views doubles; toroidal symmetry required 

Measured signal = fast ion signal + background. 
Background is a significant fraction of total signal 

fast ion 
signal NB!
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Transition between regimes can occur without an 
abrupt change in the NB power 

•  Transition promptly triggered by stepping up the NB power 

quasi-stationary! bursts/chirps!transition!

Neutron rate increase 
indicates larger fast 
ion population"

Bursting phase 
preceded by small 
frequency chirp"

sh#135388!
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For small bursts, mode structure does not change 
significantly in time 

•  Up to six reflectometer channels 
measure displacement for 
R=110→145cm 

•  Good correlation here between 
Mirnov and reflectometer 

Mode amplitude from Reflectometer (time-domain)!

Mirnov (Fourier)!

Spectrogram from Mirnov (time-domain)!

Black: Mirnov – Colors: Reflectometer!

n=3!

second NB!
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Variations of mode structure for same mode number 
can be observed during avalanches 

•  Dynamics may differ for 
different n’s 

•  Reflectometer and magnetics 
do not always track well each 
other at the end of avalanches 

Mode amplitude from Reflectometer (time-domain)!

Spectrogram from Mirnov (time-
domain) overlaid to FFT spectrogram!

Black: Mirnov"
Colors: Reflectometer"

Mirnov (Fourier)!

n=3!

n=3!
n=3!

Spectrogram from Mirnov!
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Different n’s may show quite different 
temporal evolution, too 

•  Measured structure not too different 
from that of n=3 mode 

•  Two “phases” with different spatial 
structure? 

Mode amplitude from Reflectometer (time-domain)!

Spectrogram (time-domain)!

Black: Mirnov"
Colors: Reflectometer"

Mirnov (Fourier)!

n=6!

n=3!

n=6!

n=4!

Analysis jumps to n=4 
as n=6 mode fades 
away"

phase 1" phase 2"

Reflectometer – mode 
amplitude!

Spectrogram from Mirnov!
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Combined analysis of n=3,6 
modes during avalanche 

•  The two modes have similar 
structures 
–  Slightly change for last ~400µs 

•  Temporal evolution is different 
–  n=3 has faster growth, especially 

at the end of the avalanche 
(t~268.2 ms) 

5 x Sn=6!

Sn=3!

Spectrogram (time-domain)!
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Analysis of drops in neutron rate & sFIDA profiles 

•  Fit neutron rate time trace to infer amplitude, duration and exact 
time of the drop 

•  Fit sFIDA radial profiles with modified gaussian function, then 
calculate losses from temporal evolution of the fit 
–  Fit reduces errors; constraints on radial profile look OK 

neutrons! s-FIDA!

R  [cm]!

co
un

ts
!
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No correlation found between spacing between 
avalanches and amount of lost fast ions 

•  No “memory” of fast ion (or plasma) evolution 
•  Indication of strongly non-linear phenomenon?  
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Broad energy region affected 
by avalanche-induced loss 

•  Central channels show larger depletion 
•  No clear evidence of redistribution for small amplitude activity 

FIDA spectra from three different chords measured before and after"
an avalanche event (shot 135395, t=364ms)."

before!

after!

difference!
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Similar TAE and TAE avalanches’ behavior observed 
in Helium and Deuterium plasmas 

•  Low-n, quasi-stationary TAEs evolve into bursty modes & 
avalanches 

•  Fast ion losses up to ~30% during avalanches 
•  Similar ne,i, Te,i, Ip, Btor, PNB , but different plasma shape   

 (LSN vs limiter) 

helium deuterium 
PNB [MW]!
neutrons!

PNB [MW]!
neutrons!


