

XP-1019: Disruptivity Reduction with β_N -Control Status Report

College W&M

Colorado Sch Mines

Columbia U

CompX

General Atomics

INEL

Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

Purdue U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

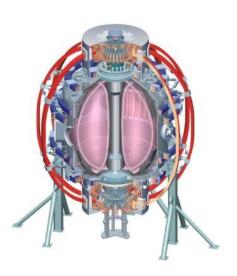
UCLA

UCSD

U Colorado

U Illinois

U Maryland

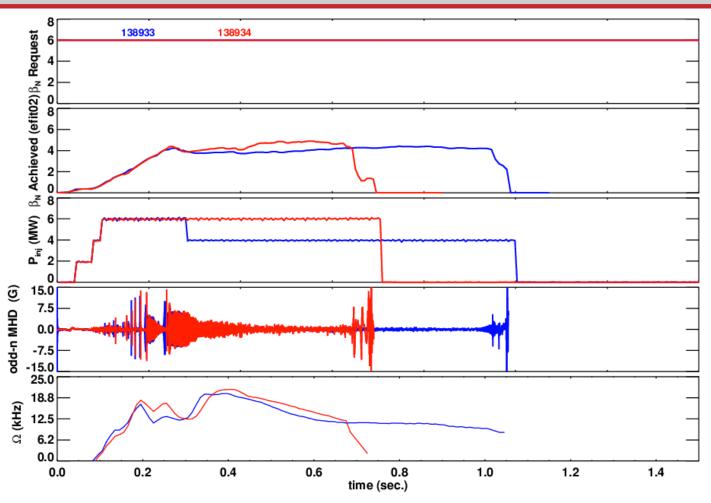

U Rochester

U Washington

U Wisconsin

S. Gerhardt, et al.

Monday Physics Meeting


Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Overview

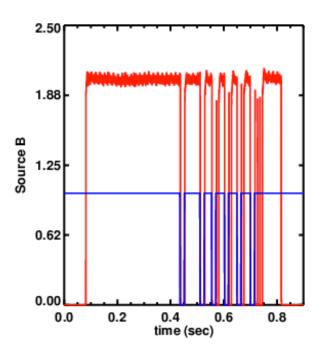
- XP Goal: Demonstrate (or not) that feedback control of β_N , using rtEFIT and NB modulations, allows operation at a higher value of β_N than feedforward programming.
- XMPs in 2009 and 2010 brought the system on-line.
 - 2009: First demonstration of capability.
 - 2010: Recommissioned after a change of the PID operator, determined useful values of the proportional and integral gains.
 - Further fix implemented upon suggestion by M. Bell and E. Kolemen.
 - $-\beta_N$ control is ready for use in XPs!
- XP took ~3 hours on Monday, June 28th.
 - 2 & 4 days separated from argon vents.
 - Did achieved a reasonable target condition.
 - Was not able to show that β_N control is particularly advantageous.
 - However, NB reliability issues severely impacted the experiment.
 - Source B often failed to run on, possibly due to machine contaminants impacting source performance.

Target Condition Achieved

Plasma 138933 with 4 MW runs through, with some late core mhd. Plasma 138934 with 6 MW has an large mhd event and disruption.

Can the β_N control system find the power that maximizes pulse length w/o mhd. (Extra power slows the J evolution and delays core MHD, unless an RWM/Ideal mode grows.)

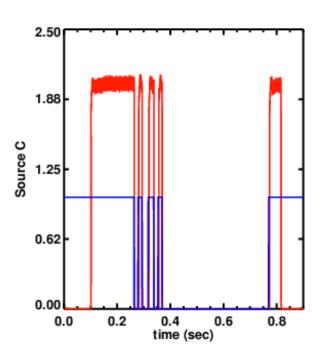
Turn-On Failures Compromised the Control Test

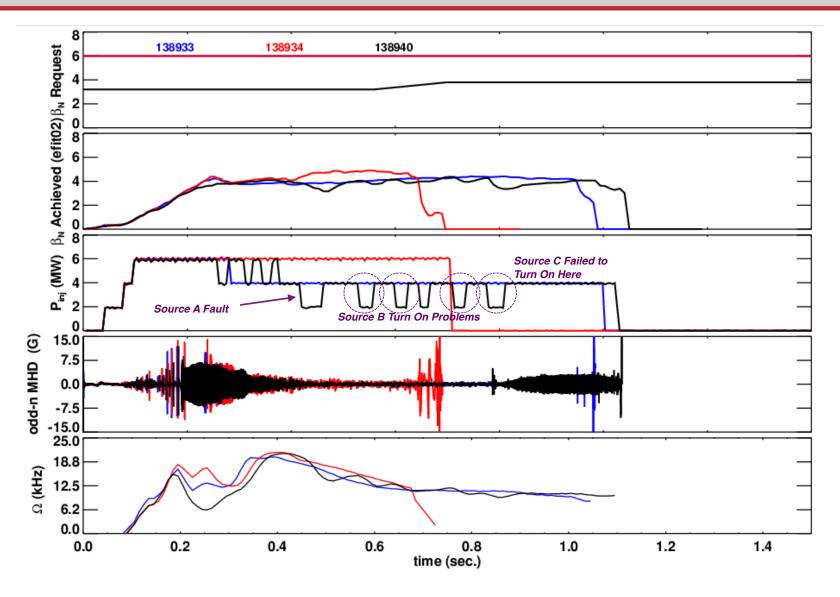

Requested Power
Requested β_N Achieved β_N (rtEFIT)

8 6 6 0.0 0.2 0.4 0.6 0.8 time (sec)

Source B

Modulation Command


Source Power


Source C

Modulation Command

Source Power

Best Show With Feedback Was a Longer Pulse Than 4 MW Reference, but May Source Issues

Status and Plan

- Good high-κ, long-pulse target has been achieved.
- β_N control is showing signs of doing its job.
- Need 3-4 hour block of time to finish the XP.
 - Desire improved machine conditions.
 - Get the "Z_{eff} anomaly" down so that TRANSP is more reliable.
 - Need reliable NB turn-ons.

