

Dust detection, transport and modeling.

Three talks:

- First real-time detection of surface dust in NSTX
 C. H. Skinner, B. Rais (U. Provence), L. Roquemore, D. Mansfield, H. Kugel.
- 3D reconstruction of pre-characterized lithium and tungsten dust particle trajectories in NSTX

 L. Roquemore, J. Nichols (Cornell), D. Mansfield.
- 3. Modeling of dust transport in NSTX with DUSTT/ UEDGE code(remote) - R. D. Smirnov, S.I. Krasheninnikov, A.Yu. Pigarov (UCSD) A.L. Roquemore, D.K. Mansfield, C.H. Skinner (PPPL), J. Nichols (Cornell).

Motivation:

- High levels of dust are expected in ITER from more intense plasma wall • interactions and longer pulse duration.
- Dust will have important safety and operational consequences: •
 - 1. 670 kg is ITER limit on mobilizable cold dust (public safety).
 - 2. Vacuum vessel integrity (4 kg H₂ 2 bar overpressure limit) leads to: 6 kg limit on W, Be, C hot dust or 11 kg Be, 230 kg W if C is absent.
 - 3. Transport of W dust could prevent fusion burn (dust limit unknown).
 - 4. Dust could obscure diagnostic first mirrors (limit unknown).
- ITER strategy is to:
- Diagnose dust inventory from divertor erosion measurements (laser rangefinder).
- Install local dust monitors (presently undeveloped). •

Worldwide:

ITPA DSOL-21: "Introduction of pre-characterized dust for dust transport studies in the div.& SOL."

ITPA Diag. 4 initiative: "ITER Dust and Tritium Measurement"

IAEA CRP: "Characterization of the Size, Composition and Origins of Dust in Fusion Devices."

3 EU funded activities on: '(i) Dust generation in present devices'; (ii) 'Conversion of co-deposits to dust'; (iii) 'Dust diagnosis in plasma'; dust test facility planned in Korea;

also PPPL collaborations with LHD, Tore Supra,

Electrostatic detection

of dust settling on surfaces.

- A 30-50v bias is applied across a grid of interlocking traces on a circuit board.
- Impinging conductive dust creates a short circuit and current pulse.
- Current pulse is input to nuclear counting electronics and converted to counts.
- Number of counts is proportional to mass of dust.
- Current also vaporizes or ejects dust from the circuit board restoring an open circuit.
- Device works in air or vacuum.

Partial view of grid with 25 micron spacing

Electrostatic Dust Detector in action

- Complex waveform converted into counts by standard nuclear counting electronics.
- Larger dust particles take longer to vaporize and create signals with higher voltage and longer duration.

Charles Skinner NSTX Physi

Waveform contains information on dust size

Development Path

- First detector (2004) worked well in air and vacuum. sensitivity in vacuum: ~70 µg/cm² = 54 counts. However average dust level measured on NSTX (by weighing dust collected on slide) = 5.6 ng/cm²/discharge.
- x10⁴ increase in sensitivity needed to measure NSTX dust (not a problem for ITER dust levels).

Strategy...

- 1. Increase detector area
- 2. Finer grids
- 3. Upgrade electronics

Credit to National Undergraduate Fellows: A. Bader, D. Boyle, A. Campos, C. Parker, R. Hensley, C. Voinier

Laboratory Setup:

Microbalance to weigh dust before and after release. 5 g capacity 1 μ g readibility (fingerprint weighs 40 μ g)

Image of dust scraped from tile count median diameter 2.14 μ m (cf NSTX dust: 2.06 μ m) Charles Skinner NSTX Physics Meeting, 26 July, 2010

1. Increase detector area:

Both have 25 μ m trace spacing. 5x5 cm grid has 16x area and 50 m of 25 μ m spacing !

2. Finer grids

Sensitivity increased 30x with finer grids

3. Remove low pass RC filter

Detection threshold reduced 50-120x: now 4,000 counts for 100 ng/cm²! But high sensitivity lead to electrical pickup in NSTX environment.

Differential detection electronics

SPAs and RF antenna are a powerful source of noise on NSTX. New differential circuit has high immunity from electrical noise pickup.

Calibration for carbon particles

Calibration for lithium particles

Lithium particles 40 µm diameter (used for wall conditioning)
 12 mm grid, 25 µm spacing, 50 v bias in vacuum
 Threshold Sensitivity 14.5 ng/cm²/count
 (fewer particles than C for a given mass)

Detector in NSTX

Mesh cover (90 μ m pore size) shields from fibers and large particles that might cause a permanent short. Two grids in same electrical environment. Only upper grid (Ch.1) exposed to dust. Mica cover shields lower grid (Ch.2).

Additional covered detector detects only electrical pickup.

Credit: Tom Provost 14/18

First tokamak dust signals:

For comparison: signal from lab dust source.

Dust signals July-Aug, 2009:

Charles Skinner NSTX Physics Meeting, 26 July, 2010

Summary of part I:

- FIRST real-time measurements of surface dust in ANY tokamak.
- High threshold sensitivity to carbon dust 0.15 ng/cm²/count
 - suitable for contemporary tokamaks.

Measurements validated by:

- 1. NSTX signal similar to lab dust source.
- 2. No signal on covered detector as expected.
- 3. Large increase in signal with Li particles.

Further development needed for ITER environment (more rugged, less sensitive, radiation hardened...)

PPPL report 4517 available at: http://www.pppl.gov/pub_report/2010/reports-2010.html accepted for Rev. Sci. Instrum. (2010).

1st results on dust <u>removal</u> with electrostatic travelling wave

Forrest Friesen, Grinell U, Brendan John, Swarthmore, Carlos Calle (NASA)

~5 μ m W particles on dust conveyor

After:

+500v pre charge for 10s3000v, 50hz traveling wave

Material removed vs frequency, 1200v amplitude 500v pre charge for 10sec,.

