

Supported by Science Office of Science

XP1029: Dependence of P_{LH} on the X-point radius

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

D.J. Battaglia, R. Maingi, S. Kaye & the NSTX Research Team

NSTX Physics Meeting September 16, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Simulations and observations suggest dependence of P_{LH} on R_X

- XGC-0: thermal ion loss at the X-point increases with R_X
 - Increases E_r and E_r shear
 - May result in lower power threshold
- Goal: Measure P_{LH} vs R_X
 - Aim for transition during a period with small dW/dt and constant P_{OH} and n_e to reduce uncertainty

R. Maingi, et. al., *Nucl. Fusion*, **50** (2010) 064010

Two shapes reproduced with low and high lithium depositions

- First day: 300 mg of lithium
 - Early I_i evolution altered desired high triangularity shape with $R_X = 0.42$
 - 5.5 kG to avoid transition before flattop
- Second day: 50 mg of lithium

OAK RIDGE

NSTX

- Good reproduction of both shapes
- Lower CS gas programming

Initial results suggest dependence of P_{LH} on R_X

- P_{loss} computed from EFIT02
 - $\rm P_{OH} \sim 0.3$ MW, dW/dt ~ 0.5 MW
 - $P_{loss}/\overline{n_e}$ approximate correction for P_{LH} density dependence
 - P_{NBI} is total beam power
- $R_X = 0.5 \rightarrow 0.64$ (22% reduction in B_t at X)
 - $P_{\text{loss}}/\overline{n_{e}}$ reduction of 29% w/ low lithium
 - $P_{\text{loss}}/\overline{n_{e}}$ reduction of 20% w/ high lithium
- Lithium = 50 mg \rightarrow 200 mg
 - $P_{\text{loss}}/\overline{n_{\text{e}}}$ reduction of 41% for high- δ
 - Maximum lithium at outer strike point
 - $P_{loss}/\overline{n_{e}}$ reduction of 33% for low- δ
 - Maximum lithium in private flux region

Future plans and goals

- Higher time resolution equilibrium calculations underway
 - LRDFIT and/or EFIT02 at 1 ms resolution
 - Input into TRANSP to get beam loss
 - Aim to get consistent values of P_{OH} and dW/dt from different models
 - Complete error analysis
- XGC calculations for high- and low- δ shapes at time of L-H
- XP would benefit from additional run time before APS
 - Repeat low- δ shape with low lithium for reference
 - Get $R_X = 0.42$ shape using pre-heat during I_p ramp
 - Decrease B_t so it matches the value at X-point in the low- δ shape

Values from EFIT02 used for initial analysis

- Value of (P_{OH} dW/dt) used is maximum in range:
 - 50 ms after beam turn-on
 - Beam slowing down time
 - 15 ms before next beam turnon or L-H
 - EFIT02 smoothing
- Using P_{NBI}
 - Will use TRANSP to compute absorbed beam power

