LH power threshold scaling with X-point radius and the role of X-point loss

- Exp. Results: P_{LH} decreases with larger X-point radius
 - Also, P_{LH} lower for grad-B in favorable direction
 - Prior to LH transition, increased D_{α} at inboard divertor and ~ 1 kA divertor current toward the outboard divertor
 - Reverse effect for unfavorable grad-B
 - Edge T_e at LH transition is similar over a large range in heating power, neutral fueling and lithium conditions for a matched shape
- Connection to X-point loss and LH transition physics
 - Ion orbit loss can be a source of E_r at the plasma edge (sets a min $|E_r|$)
 - Transition is predicted to occur at some threshold E_rxB or E_rxB shear
 - Velocity hole calculations indicate:
 - Critical edge T_I for appreciable X-point ion loss (~ 100 eV) is about 60% larger for high-δ shape vs low-δ shape
 - Ions primarily lost to inboard (outboard) divertor for favorable (unfavorable)
 - Very sensitive to edge $T_i (\approx T_e \text{ at edge})$ and magnetic geometry
 - Could also tie in P_{LH} vs I_{p} and/or P_{LH} vs $\mathsf{d}_{\mathsf{rsep}}$ results
- Need/Strong Desire: XGC0 calculations