

Supported by

Simulation of microtearing turbulence in **NSTX and scaling with collisionality**

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Walter Guttenfelder¹, J. Candy², S.M. Kaye¹, W.M. Nevins³, E. Wang³, R.E. Bell¹, B.P. LeBlanc¹, G.W. Hammett¹, D.R. Mikkelsen¹, H. Yuh⁴

> ¹PPPL ²General Atomics ³LLNL ⁴Nova Photonics Inc.

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Simulation of microtearing turbulence in NSTX and scaling with collisionality

- Experimental motivation: favourable $\Omega_i \tau_{E,th} \sim v_*^{-0.95}$ dependence in NSTX
 - Cause of anomalous χ_e in high- β discharges unknown, scaling to future devices uncertain
 - Microtearing modes robustly unstable in high v_* discharges (outer half-radius)
 - Linear stability scaling $\gamma_{lin} \sim v_e$ qualitatively consistent with experimental trend \rightarrow motivates non-linear simulations using realistic experimental parameters
- First <u>non-linear</u> gyrokinetic microtearing simulations for an ST (PRL, 2011) <u>New and unique physics</u>
 - Simulations require relatively fine radial grid to resolve resonant current layers ($\Delta_i \sim 0.3 \rho_s$)
 - Transport dominated (~98%) by magnetic flutter ($\delta B_r/B \sim 0.15\%$)
 - Perturbed field lines are globally stochastic (w_{island}>δr_{rat}), test particle stochastic transport model (χ_{st}≈v_{Te}·D_M) agrees to within 25% of simulations
 <u>Transport scaling relevant to experiment</u>
 - Predicted $\chi_{e,sim}/\chi_{GB} \sim v_{*e}^{1.1}$ close to experimental scaling
 - "Stiff" with ∇T_e , instability threshold important (and non-linearly upshifted)
 - Suppressible by experimental levels of E×B shear
 <u>Measurement opportunities</u>
 - BES ($k_{\theta}\rho_{s}$ <1), high-k scattering (δn , k_{r} >> k_{θ}), polarimetry (δB_{r} strong, broad & ballooning)
 - New data prior to APS (XP1164) would be great, but not critical to invited talk