

Supported by

U.S. DEPARTMENT OF

Office of Science

"Progress Towards an Advanced ST Operating Point in NSTX" or "Progress Developing the Core Physics Scenarios For Next Step STs in NSTX"

Colorado Sch Mines Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics New York U Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U **SNL** Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

SPG

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Topic Combines Results from NF Papers Published in 2010 and 2011 (No "scenario" APS or IAEA talks since ~2006)

- Thesis: Recent physics and control research on NSTX has narrowed the gap between present and next step ST core physics scenarios.
- Motivation: Scenario needs of next-step STs,
 - Lots of NBCD, high-κ, some at higher A. (ORNL, PPPL, GA, Culham studies)...and how current drive, transport, and stability are coupled.
- Current drive (TRANSP w/ NUBEAM):
 - Cases with agreement between classical calculations and reconstructed profiles for a range of configurations.
 - Case with documented TAE induced current redistribution.
- Confinement (TRANSP w/ NUBEAM):
 - Different confinement trends with & without Li.
 - Connect the confinement back to observed current drive trends.
- Global Stability (DCON, PEST):
 - Emphasize shaping, low- F_P , n=1 control for improved performance.
 - Connect to the CU work on kinetic RWM physics and advanced controllers.
 - Discuss n=1 kink/tearing that terminates most higher-I_N discharges.
 - Mode eigenfunction with USXR, mode triggering, Breslau modeling, current profile optimization (elevate q_{min}!).
- Comparison to conventional aspect ratio "Hybrid" scenarios.
- Extension to higher-A: Connect the above results (at lower-A), to A=1.75-1.8 space for NSTX-U and (some) next step devices (FY-11 milestone).
- NSTX-Upgrade: Example of free-boundary TRANSP modeling, show examples of a few interesting scenarios with f_{NI}=100% or high-β_T, with elevated q_{min}. (ISOLVER-TRANSP, DCON, PEST).
- Through the talk:
 - Emphasize the importance of shaping, Li, n=1 control, improved PCS in developing these scenarios.
 - Emphasize the "virtuous circle", "synergism" (whatever) that these provide.
 - Bring out example best shots: Highest- W_{MHD} , Lowest- V_{loop} , highest- β_P , "sustained" high- β_T .

