Driving Toroidally Asymmetric Current Through the Tokamak Scrape-Off Layer to Control Edge Profiles and Stability

I. Joseph¹, R. H. Cohen¹, T. D. Rognlien¹, D. D. Ryutov¹, H. Takahashi², S. J. Zweben²

¹Lawrence Livermore National Laboratory, Livermore, CA, USA ²Princeton Plasma Physics Laboratory, Princeton, NJ, USA

NSTX Physics Meeting

Princeton, NJ May 9th, 2011

OUTLINE

1. Motivation: non-axisymmetric divertor design can mitigate heat exhaust

1. SOL convection: potential for enhanced transport

2. SOL current: magnetic perturbations for ELM pacing/control

3. Passive current drive: reactor-relevant techniques

4. Conclusion

MOTIVATION: ST's need to solve a burning problem!

- Steady-state and transient heat fluxes are large
 - Smaller size implies larger P/R and P/R²
 - Fluxes are difficult to exhaust and difficult to radiate away

Pilot Plant

- Demonstration that ST's are attractive power plants will require design principles and/or control techniques for mitigation of peak fluxes
 - At full current, NSTX-Upgrade will need to utilize mitigation techniques to achieve planned 5 sec pulse length
- NSTX Mission to confront high heat flux issues presents an opportunity to prototype new control methods for SOL, divertor, & PMI

SOLUTION: Toroidal variations of divertor plasma can be used to mitigate target exhaust

- Non-axisymmetric variations in the electrostatic potential drive both ExB convection and parallel current J_{||}
- SOL convection¹ can be used to spread particle and heat fluxes in the divertor
- SOL current² can be used to generate magnetic perturbations inside the separatrix that controls pedestal transport & stabillity
- Can be driven either by direct electrical biasing or by passive generation of toroidal divertor asymmetries

¹R. H. Cohen and D. D. Ryutov, Nucl. Fusion **37** 621 (1997) ²I. Joseph, R. H. Cohen and D. D. Ryutov, Phys. Plasmas **16** 052510 (2009)

4 I. Joseph, NSTX Physics Meeting, May 9th, 2011

 \mathbf{V}

Phasing at the target plate determines the effect in the SOL

- Perpendicular current is smaller than parallel current by $O(\rho/\lambda)$ neglect to 0th order
- Parallel current conserved along field lines $0 = \nabla \cdot \mathbf{J} \approx \nabla \cdot J_{\parallel} \mathbf{b} = \mathbf{B} \cdot \nabla J_{\parallel} / B$
- Potential develops similar spatial structure $\Phi = \Phi_{\text{target}} \int \eta_{\parallel} J_{\parallel} d\parallel \approx \Phi_{\text{target}} (1 1 / L_c)$

Sinusoidal phase on target

best for driving radial convection cells in divertor

$$\Phi \propto \cos(k_{\psi}\psi)\cos n(\zeta - q\theta)$$

OUTLINE

1. Motivation: non-axisymmetric divertor design can mitigate heat exhaust

1. SOL convection: potential for enhanced transport

2. SOL current: magnetic perturbations for ELM pacing/control

3. Passive current drive: reactor-relevant techniques

4. Conclusion

SOL POTENTIAL: possible generation of convection cells that enhance radial transport

- Electrostatic convection can be used to control fluxes if the potential generates enough vorticity to entrain turbulent structures
- Equilibrium SOL potential is on the order of the floating potential

 $\Phi_0 \sim \Lambda T_e \qquad \Lambda \sim 2-4$

- Radial decay lengths are comparable

$$L_{\Phi} = \Phi_0 / \Phi_0' \sim T_e / T_e' = L_T$$

 Generating a convection cell requires both an O-point and an X-point

$$\Phi_1/\Phi_0 > 1/k_x L_{\Phi} \qquad e\Phi_1/T_e > \Lambda/k_x L_T$$

- There are $N = k_x L_{Te}/\pi$ cells within a single L_T width

Convection cell transport can dominate both parallel transport and anomalous transport

Maximum rotation frequency at cell center

 $\Omega_0 = k^2 \Phi / B$

- Parallel transport
 - Time-scale $\tau_{\parallel} = L_c/V_T$ where $V_T = (T/m)^{1/2}$
 - Convection dominates conduction when $\Omega_0 \tau_{\parallel} > 1$ $e \Phi/T > 1/k^2 \rho L_{\rm c}$
 - Assume $T \sim 25 \text{ eV}$, $L_c = 10 \text{ m}$, and $e\Phi/T \sim 1$ then $\lambda_x < 2\pi(\rho L_c)^{1/2} \sim 50 \text{ cm for } D^+ \text{ and } \sim 7 \text{ cm for } e^-$

Anomalous transport

- Anomalous diffusion D_a yields transport time-scale $\tau_a = 1/k^2 D_a$
- Convection dominates when the Peclet # $Pe = \Omega_0 \tau_a = \Phi/BD_a > 1$ which requires $e\Phi/T_e > D_a/\rho_s V_T$
- Convection dominates Bohm transport $D_{\rm B} = \rho_s V_T / 16$ when $e \Phi / T_{\rm e} > 1/16$
- Convection dominated regime yields large effective diffusion¹

 $D_* \sim P e^{1/2} D_a = (D_a \Phi/B)^{1/2} \sim 4 \ (D_a D_B)^{1/2}$

¹M.N. Rosenbluth, Phys. Fluids **48** 024003 (1987)

sion Energy

Electrode biasing experiments on NSTX have demonstrated a local interaction with SOL plasma & filamentary structures¹

- Two pairs of biasable electrodes were installed in the NSTX divertor
- When biased to +/- 90 V electrodes are observed to locally deflect plasma filaments near the divertor surface by ~ 1 cm
- Previous midplane electrode experiments demonstrated local control over SOL profiles consistent with ExB convection²
- Comparison with theory is currently in progress

Bay E electrodes

Without bias

With $\pm 90 \text{ V}$ bias

- ¹S. J. Zweben, et al., private communication (2010)
- ²S. J. Zweben, et al., Plasma Phys. Controlled Fusion, **51** 105012 (2009)

Full divertor biasing experiments on MAST were able to demonstrate broadening of strike point flux profiles¹

- Six graphite ribs electrically isolated from the vacuum vessel and directly biased with 1 MW power supply
- provides 5 kA at 200 V (DC)
- effectively n=6, I=2.5kA perturbation
- Strike-points observed to broaden & shift in opposite directions

-width could be enhanced up to $\sim 4x$

G. F. Counsell, et al., EPS St. Petersburg 2003 ECA Vol. 27A, P-3.202

Peak heat fluxes significantly modified

1.40

OUTLINE

1. Motivation: non-axisymmetric divertor design can mitigate heat exhaust

1. SOL convection: potential for enhanced transport

2. SOL current: magnetic perturbations for ELM pacing/control

3. Passive current drive: reactor-relevant techniques

4. Conclusion

SOL CURRENT: possible generation of magnetic perturbations for ELM pacing and/or ELM control¹

Resonant threshold is rather small

 $|B_{m=qn}/B| \sim 2-5 \times 10^{-4}$

- SOL currents are primarily parallel to B
 - Generates naturally resonant spectrum for $\delta A_{||}$ and δB_{perp}
- The net surface current determines

the perturbation amplitude $\delta \! B$

- Net parallel surface current density

$$K_{\parallel} = \int J_{\parallel} dx$$

- Determines the tangential discontinuity

$$\begin{bmatrix} \partial \mathbf{B} \end{bmatrix}_{\mathbf{x}} = \mu_{\mathbf{x}} \mathbf{K} \times \mathbf{n}$$

- Yields estimate $\delta B_{\text{normal}} \sim [\delta B]_{\text{tang}}/2 = \mu_0 K_{//}/2$
- ¹I. Joseph, R. H. Cohen and D. D. Ryutov, Phys. Plasmas **16** 052510 (2009)
 I. Joseph, Phys. Plasmas **16** 052511 (2009)
 I. Joseph, Contrib. Plasma Phys. **50** 311 (2010)
- 12 I. Joseph, NSTX Physics Meeting, May 9th, 2011

Upper limit for target field perturbation strength can exceed threshold $B_{\rm mn}/B \sim 2-5 \times 10^{-4}$ by a wide margin

Upper limit based on full saturation current assumes 100% efficiency

- Entire target plate is used to drive ion saturation current
- Field near target plate is equal to field at midplane

	λ_{sat}	$J_{ m sat}$	K _{sat}	δВ	$\delta B/B$
	(cm)	(A/cm^2)	(A/cm)	(G)	(× 10-
					4)
ITER	2-3	100-400	200-1000	100-800	20-200
DIII-D	2-3	5-40	10-100	6-80	3-40
NSTX	5	2-4	10-40	6-20	10-40
MAST	5	0.4-2	2-10	1-6	2-10

Definitions

 J_{sat} = peak value of ion saturation current λ_{sat} = perp. *e*-folding length of J_{sat} across target $K_{\text{sat}} = J_{\text{sat}} \lambda_{\text{sat}}$ = integrated surface current density $B_{\text{sat}} = \mu_0 K_{\text{sat}}/2$ = amplitude near target plate

δB generated by the SOL current has a naturally edge-resonant helicity spectrum $k_{\parallel} \propto m - qn = 0$

Spectrum is naturally edge-resonant

$$B_{m=qn} = \varepsilon_{SOL} B_{sat} (| /a) \log(a/nq_*d)$$

d = distance from flux surface to surface current $q_* = B_T/RB_P$ ' quantifies X-point shear (4-5 NSTX) ϵ_{SOL} = current drive efficiency $(RB_pK)_{\text{mid}}/(RB_pK)_{\text{target}}$

5

• Efficiency can be controlled by optimizing location & width of current profile to reduce phase mixing 100 1 2 3 4

Narrow current filaments can also efficiently generate magnetic perturbations¹

Magnetic field due to current filament

- Yields estimate $\delta B \sim \mu_0 I_{\parallel}/2\pi d$
- Resonant harmonic $<\delta B_{m=qn} > \sim \delta B d/a \sim \delta B/10$

	$A_{\rm tot}$ (cm ²)	$I_{\rm tot}$	J (A/cm ²)	<i>δВ</i> (G)	<i>бВ/В</i> (<i>B</i> =0.5 T)
BEaP electrode +90V	6=4x1.5	20-40 A	3-6	1-2	2-4x10 ⁻³
Entire BEaP tile x 25 area	150=15x10	0.5-1 kA	3-6	25-50	0.5-1x10 ⁻ 2
Far SOLC sensor ELM event		1-10 kA	3-4	50-500	10 ⁻² -10 ⁻¹

Will *\delta B* decay due to phase mixing?¹

 Low shear regions narrow width & reduce phase mixing of current paths²

¹H. Takahashi, et al., Nucl. Fusion **44** 1075 (2004) ²H. Takahashi, et al., NSTX research proposal (2010)

OUTLINE

1. Motivation: non-axisymmetric divertor design can mitigate heat exhaust

1. SOL convection: potential for enhanced transport

2. SOL current: magnetic perturbations for ELM pacing/control

3. Passive current drive: reactor-relevant techniques

4. Conclusion

PASSIVE DRIVE TECHNIQUES: need further development

- Direct electrical biasing has advantages
- Active control with high rep. rate & real time response to plate overloading
- Could also be used to actively sweep strike point
- But, hardware is severely constrained inside reactor vacuum vessel
- High neutron fluxes damage insulators needed for electrical isolation
- Possibly substantial biasing power supply; power delivered directly to SOL
- Large magnetic forces can damage supporting structures
- Reactor-relevant proposals¹ could be tested for the first time on NSTX-Upgrade
- Drive through asymmetries in Te
 - neutral gas pumping and/or fueling
 - neutral and/or impurity radiation
- Variation in plate angle
 - Can control fueling or angle wrt. field lines
- Variation in materials that control ion recycling, secondary electron emission, & conductivity

17 I. Joseph, NSTX Physics Meeting, May 9th, 2011

Variations in secondary emission coefficient

UEDGE flux-tube model showed that ion or neutral pumping could generate much more current drive than gas-puffing¹

• Flux-tube model (DIII-D params)

 $B_P/B_T = 10, L_c = 30 \text{ m}$ $P_{inj} = 0.1 \text{ MW/m x } 10 \text{ m} = 10 \text{ MW}$ $D = 0.3 \text{ m}^2/\text{s}, \chi = 0.5 \text{ m}^2/\text{s}, \mu = 1 \text{ m}^2/\text{s}$

- Particle flux BC (ions+neutrals)
 - $\Gamma_{\text{wall}} = (1 R_{\text{i}})n_{\text{i}}c_{\text{s}} + (1 A_{\text{n}})n_{\text{n}}(T_{\text{n}}/2\pi m_{\text{n}})^{1/2}$
 - R_i = ion recycling coefficient
 - A_n = neutral albedo coefficient

Method	Parameter	K_{\parallel} (kA/m)	$I_{\parallel}/I_{\rm sat}$
Biasing	Φ=+95V	21	82%
Wall pumping	R _i =85%	6.2	56%
Pumping PFR	A _n =85%	4.9	39%
Pumping SOL	A _n =85%	3.4	24%
Puffing SOL	<i>I</i> _n =70A/m x 10m =700 A	1.6	6%

ion Energy

oaram

OUTLINE

1. Motivation: non-axisymmetric divertor design can mitigate heat exhaust

1. SOL convection: potential for enhanced transport

2. SOL current: magnetic perturbations for ELM pacing/control

3. Passive current drive: reactor-relevant techniques

4. Conclusion

CONCLUSION

- ST heat fluxes may be mitigated by using non-axisymmetric divertor perturbations to control edge plasma transport & stability
 - Electric potential generates convection that spreads steady-state fluxes
 - Parallel current generates RMPs for ELM pacing and/or ELM control

• First experiments have shown promise

- Full divertor biasing MAST was able to widen the strike-point
- NSTX electrodes are able to locally affect plasma
 - So far, effects in NSTX are small (1cm), but may be optimized (more to come)
- Active biasing techniques need to be better understood
 - Direct measurement of SOL current, convection, & fields is desirable

• Next-generation experiments are needed: NSTX-Upgrade

- Prove that active biasing can be used to reduce peak fluxes
- Prove that SOL current be used to impact ELMs
- Use passive drive techniques for the first time (requires specific divertor design)

Non-axisymmetric electrostatic perturbations can also be used to stabilize or destabilize divertor instabilities

 Kelvin-Helmholtz modes can be destabilized by the sheared flows in the convection cell pattern

- Target plate tilt controls the stability of some of the most virulent instabilities near the target plate¹
 - Tilt can be used to drive convection by generating divertor asymmetries

- The modes² are driven by Te' and destabilized by sheath resistance
 - dominate locally generated turbulence due to large growth rates

¹D.D. Ryutov and R.H. Cohen, Contrib. Plasma Phys. **48** 48 (2008) ²H.L. Berk, et al., Nucl. Fusion **33** 263 (1993)

SOL current drive efficiency can be optimized by controlling the target plate J_{\parallel} profile

- Location & width of the J_{\parallel} profile changes the efficiency
- Efficiency of SOL current drive at midplane
 definition independent of flux expansion

$$\varepsilon_{\text{SOL}} = \frac{\left|\int J_{\text{SOL}} d\psi\right|}{\left|\int J_{\text{target}} d\psi\right|} = \frac{\left|RB_{p}K_{\parallel}\right|_{\text{SOL}}}{\left|RB_{p}K_{\parallel}\right|_{\text{target}}}$$

Effective width set by phase coherence

$$\psi_b - \psi_a \Big|_{\Delta \varphi_{SOL} = \pi} = \sqrt{\psi_a \psi_b} 2 \sinh(\theta_* / 2nq_*)$$

• Optimal "Coherence width" shrinks as strike point is approached

• δB is largest at low toroidal mode numbers

• Probably limits useful range to $n \sim 1-3$

Enhanced pumping generates asymmetric target plate conditions that drive SOL current

Efficiency of various methods for the flux tube model

Method	Parameter	$\left< \frac{n_{\rm e, leftt}}{n_{\rm e, right}} \right> $ (%)	$\left< \frac{T_{\rm e, right}}{T_{\rm e, left}} \right>$ (%)	$ig \langle \Phi_{ ext{thermo}} ight angle $ (V)	I _{II} (kA/m)	I _{sat,right} (kA/m)	$\frac{I_{\parallel}}{I_{\rm sat, right}}$ (%)	ε _{sol} (%)
Electric Bias	$\Delta \Phi_{wall}$ =95V	46	9	23	17.3	21	82	2
Recycling	$R_{\rm n} = 85\%$	14	4	50	6.2	11	56	5
Pump inner	$A_{\rm n} = 85\%$	37	10	28	4.9	13	39	6
Pump outer	$A_{\rm n} = 85\%$	68	23	20	3.4	15	24	9
Puff outer	$I_n = 70 \text{A/m}$	69	29	10	1.6	26	6	20
Pump & puff outer	$A_{\rm n} = 85\%$ $I_{\rm n} = 40 \text{A/m}$	67	13	19	3.9	18	21	8
	ш							

Recycling & pumping from private flux zone are most effective

• All techniques are within range for ELM control at 100% SOL efficiency

• The minimum SOL efficiency ε_{SOL} required to achieve $\delta B/B > 10^{-4}$ for B = 2 T is shown in the final column

ITER Reference Case: 50% D-T, fixed impurity fraction 3% C

Geometry

- $-B_{\rm t}=5.3$ T, R=6 m
- $R_{\rm mid} R_{\rm sep} = (-6, 4) \, \rm cm$
- $-L_{\text{leg}} = 1 \text{ m}$
- $L_{con} \sim 20 m$
- Plasma Parameters
 - $-n_{\rm e,core} = 6 \times 10^{19} \,{\rm m}^{-3}$
 - $-P_{\rm e,core} = 50 \, {\rm MW}$
 - $-P_{i,core} = 50 \text{ MW}$
 - $-R_i = 1$ (no recycling)
 - $-A_{\rm n} = 0.98$ (pumping)

Transport Model

- $D_{\rm ne} = D_{\rm ni} = 0.3 \text{ m}^2/\text{s}$ $\Box \ \chi_{\rm Te} = \chi_{\rm Ti} \ 1.0 \text{ m}^2/\text{s}$ - $D_{\rm visc} = D_{\rm utor} = 1.0 \text{ m}^2/\text{s}$

ion Enerav

roorem

Tilted plates lead to partially-detached divertor plasma

 However, divertor plasma is rigid to changes in natural poloidal asymmetry generated by neutral pumping or injection

sion Energy

roaram

Two asymmetry-driven peaks in current profile: one near strike point and one near outer side of plate

• Neutral injection at $\Gamma_n = 0.1$ -1 kA can enhance effect of pumping by ~10-20%

Power and Current Scaling

- Assume density scales with Greenwald limit $n \sim n_G = I_P / \pi a^2$
- Assume Jsat scale length follows $\lambda_{sat} \sim R/I_P$ Sheath-Limited High recycling

					5			
$n_t \propto n_G$	∞		I_P / a^2		$n_t \propto$	n_G^{3}	$\propto I_P^3$	$(qR)^2 (qP_{inj}/a)^2$
$T_t \propto T_{up}$	∞	(P_{inj})	$(aRI_P)^{2/3}$	3	$T_t \propto$	n_{G}^{-2}	$\propto (I_P q)$	$(qR)^{-2}(qP_{inj}/a)$
$J_{sat} = n_t C_s$, x	$(I_P^2 P_{in})$	$_{j}R/a$	-1	J_{sat} =	$n_t C_s$	$\propto I_P^2$	$qR(qP_{ini}/a)^{-3}$
$K_{sat} = \lambda_{sat} J_s$	∞	(P_{inj})	R/aI_P) ^{1/3}	6	K_{sat} =	$\lambda_{\scriptscriptstyle sat} J_{\scriptscriptstyle sat}$	$\propto I_P q$	$qR^2\left(qP_{inj}/a\right)^{-3}$
	<i>B</i> (T)	I _P (MA)	<i>R</i> (m)	P _{inj} (MW)	J_{sat} factor	δB/B factor	<i>K</i> _{sat} factor	ठ В/В factor
NSTX	0.5	1	0.85	1	1	1	1	1
NSTX-Upgrade	1	2	0.85	10				
sheath					3.4x	1.7x	1.5x	0.75x
recycle					1.5x	0.75x	0.75x	0.37x
ARIES-ST	2	30	3.2	400 (α)				
sheath					4.5x	1.1x	0.59x	0.12x
recycle					93x	23x	12x	3x

28 I. Joseph, NSTX Physics Meeting, May 9th, 2011

