

College W&M

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

U Colorado

U Maryland

U Rochester

U Wisconsin

U Washington

U Illinois

UCLA

UCSD

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Supported by

Ideal Perturbed Equilibrium Code and **Arbitrary Jump Conditions** at Rational Surfaces **Colorado Sch Mines**

Jong-Kyu Park

NSTX Monday Physics Meeting B318, PPPL June 6, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

Motivation to perturbed equilibrium codes

- Perturbed equilibrium codes are efficient to study 3D field physics in tokamaks
 - IPEC solves ideal case
 - Future codes will include non-ideal effects

Outline

- Features in Ideal Perturbed Equilibrium Code (IPEC)
 - How to use IPEC
 - Features in inputs and outputs
 - Important concepts
- Progress on IPEC with arbitrary jump conditions
 - Numerical implementations
 - Studies in simple cases

How to run IPEC

• Copy

- -/p/nstxusr/nstx-users/jpark/ipec/ipec_1.00/---, or
- -/p/nstxusr/nstx-users/jpark/ipec/ipec_1.00/rundir/LinuxLahey64/---

• Run

- /dcon, and then
- /ipec
- Take a look
 - ipec_singfld_n#.out,
 - ipec_xbnormal_n#.out, etc
- IPEC is as easy as DCON to run

How to make input

- Only two inputs : 2D equilibrium and 3D error-field
- Open and modify
 - equil.in for geqdsk

Eq_filename="./g132633.00608"

– ipec.in for error-field on the plasma boundary surface

```
harmonic_flag=t
cosmn(2)=1.2e-4
sinmn(3)=5.7e-5,...
jac_in="hamada"
jsurf_in=0
```

tmag_in=1

```
data_flag=t
data_type="vac3d1" ("surfmn1")
infile="./rwm_1kAt.dat"
```

jac_in="pest" jsurf_in=2 tmag_in=0

– ipec.in for fixed boundary solution

fixed_boundary_flag=t

Issues on input and output coordinates (I)

- IPEC supports many different coordinates
 - Magnetic coordinates are defined

$$\vec{B} \cdot \vec{\nabla} \theta \propto \frac{R^{\alpha} r^{\beta}}{B^{\gamma} B_{P}^{\delta}}$$
 power_rin, power_cin, power_bin, power_bpin,...

Surface weighted spectrum is supported

$$b_{mn} = \frac{\oint \left(\delta \vec{B} \cdot \hat{n}\right)(\vartheta, \varphi) e^{-i(m\vartheta - n\varphi)} da}{\oint da}$$
 jsurf_in=1

– Ordinary toroidal angle is supported

- Inputs and outputs can have different coordinates
- Working coordinates are different, and set by DCON

Issues on input and output coordinates (II)

- Each coordinate has different strength
 - Hamada : best convergence, poor for inboard side
 - PEST and Equal arc : user-friendly, poor for outboard side
 - Boozer : mild convergence and accuracy everywhere
- Physics are independent on coordinates

Output structures in IPEC (I)

- Output ascii files :
 - ipec_response_n#.out : Plasma inductance, permeability, reluctance matrix, each eigenvalues and eigenvectors (resp_flag)
 - ipec_singcoup_matrix_n#.out : Coupling matrix between external fields and total resonant fields, singular currents, islands (singcoup_flag)
 - ipec_singcoup_svd_n#.out : The ith important field for resonant fields, etc, and each singular values, coupling matrix (singcoup_flag)

When error-field is provided,

- ipec_control_n#.out : Boundary response, amplification
- ipec_singfld_n#.out : Resonant fields, induced islands, Chirikovs (singfld_flag)
- ipec_pmod_n#.out : Eulerian and Lagrangian |b| profiles (pmodb_flag)
- ipec_xbnormal_n#.out : Normal xi and b field profiles (xbnormal_flag)
- ipec_brzphi_n#.out : (r,z,phi) components of perturbed b fields in (r,z,phi) coordinates (brzphi_flag, xrzphi_flag, vbrzphi_flag, vpbrzphi_flag, etc)

Output structures in IPEC (II)

- Output binary files
 - xbnormal.bin, ipec_pmodb.bin : profiles for 1d xdraw (bin_flag)
 - xbnormal_2d.bin, etc : profiles for 2d xdraw (bin_2d_flag)
 - pflux_re_2d.bin : perturbed flux surfaces (bin_2d_flag)
 - bnormal_spectrum.bin : surfmn type plots for b normal fields
- Run
 - -/xdraw xbnormal, etc
- Xdraw is a powerful tool to examine results promptly, by various interactive features, but
- Other tools (such as IDL) for ascii files are needed to make journal-quality figures

Output : normal displacements and fields

- See ipec_xbnormal_n#.out for Fourier harmonic profiles
- /xdraw xbnormal

Output : perturbed flux surfaces and fields

- See ipec_xbnormal_n#.out for fourier harmonic profiles
- /xdraw xbnormal_2d, or /xdraw pflux_re_2d

g132633.00608 with n=1 EF currents

Rational surfaces

Output: surface weighted b field spectrum

- See ipec_xbnormal_n#.out for fourier harmonic profiles
- /xdraw bnormal_spectrum

g132633.00608 with n=1 EF currents

Output: perturbed |b| profiles

- See ipec_pmodb_n#.out for fourier harmonic profiles
- /xdraw pmodb, or /xdraw pmodb_2d

Contour

• NTV routines are separate and not yet implemented in IPEC

Output : perturbed ξ and b vectors in (r,z,phi)

- See ipec_*rzphi_n#.out for data
 - Vacuum fields outside the plasma is not provided from IPEC
 - Use ipec_pbrzphi_n#.out and add your vacuum fields outside (l=0)
 - See ipec_pbrzphi (or vpbrzphi)_n#.out to have plasma response
 - See ipec_xrzphi_n#.out to have plasma displacements

• Poincare tracing code (S. Hudson) is separate

Output : resonant fields, islands, Chirikovs

• See ipec_singfld_n#.out for resonant fields, islands, etc

q	psi	real(singflx)	imag(singflx)	real(singcur)	imag(singcur)	islandhwidth	chirikov
2.000	3.46826953E-01	4.69650517E-04	-5.88121248E-04	1.17667469E+03	-1.47349436E+03	7.61589337E-02	7.72369004E-01
3.000	5.44035627E-01	1.82758806E-04	-2.42367945E-04	4.43245509E+02	-5.87815740E+02	3.85164222E-02	5.93357690E-01
4.000	6.73860934E-01	6.10155924E-05	-7.92386151E-05	1.41461753E+02	-1.83710966E+02	2.03607632E-02	4.21800633E-01
5.000	7.70403052E-01	4.94533020E-05	-6.13473827E-05	1.10785858E+02	-1.37431115E+02	1.59441126E-02	4.63529414E-01
6.000	8.39197447E-01	6.91010435E-05	-7.94839799E-05	1.49261365E+02	-1.71688974E+02	1.58277653E-02	6.43480303E-01
7.000	8.88391696E-01	6.79358284E-05	-7.34817892E-05	1.41171858E+02	-1.52696464E+02	1.33011570E-02	7.48965610E-01
8.000	9.23910435E-01	1.57830604E-04	-1.96006561E-04	3.14671694E+02	-3.90784265E+02	1.76860405E-02	1.52374141E+00
9.000	9.47124401E-01	2.88304755E-04	-3.85648019E-04	5.46143270E+02	-7.30543172E+02	1.97119845E-02	2.52142928E+00
10.000	9.62759965E-01	4.93641101E-04	-5.63773598E-04	8.84543509E+02	-1.01021223E+03	2.07356092E-02	3.66874048E+00
11.000	9.74063904E-01	2.23222979E-04	-1.45122837E-04	3.77801042E+02	-2.45617899E+02	1.06256207E-02	1.87998552E+00
•							

• When singcoup_flag=t, overlap fields will also be provided

This is being used for locking thresholds

Output : response characteristics

- See ipec_response_n#.out for response matrices
 - Surface and plasma inductance : Virtual casing currents to fields
 - Plasma permeability : External fields to total fields
 - Eigenvalues and eigenvectors for each matrix show intrinsic properties of plasma responseseach matrix
- See ipec_singcoup_matrix_n#.out for resonant coupling
 - The ith important field distributions are complete set of distributions affecting resonant fields
 - Singular values show how important they are in error field correction problems
- Coupling for NTV is being planned

Important notes for IPEC run

- IPEC results are robust enough for low- β plasmas, but sensitivity exists in high- β , H-mode plasmas, as DCON
- Boundary cutting issue :
 - If $p' \neq 0$ in edge, results depend on the relative locations of rational surfaces
 - Put boundary at the first half in a q-interval (sas_flag=t, dmlim=0.1-0.5 in dcon.in) to have robust answer
- Toroidicity issue:
 - NSTX is the most difficult, n=1 is ok, but n \geq 2 is often unreliable
 - − Make sure plasma is far from stability limit for $n \ge 2$
- Internal instability issue:
 - Refine equilibrium when DCON finds internal instability, or
 - Avoid q=1 surface by setting psi_low>psi (q=1) in dcon.in

Summary and future work (I)

• IPEC is easy to run (/dcon, /ipec, /xdraw with equil.in, dcon.in, ipec.in)

I am still testing some features and preparing manuals, and these jobs will be done by the end of June

- Vacuum (Bio-Savart) part will be implemented by the end of July
- NTV and Poincare tracing routines are presently separate, but planned for implements <u>by this year</u>
- These new features will be version-controlled
- IPEC can be sensitive as DCON, but issues will be constantly studied

Jump conditions are always necessary to solve force-balance equations

DCON solves Euler-Lagrange equation for displacements

$$\vec{\Xi} = \left\{ \left(\vec{\xi} \cdot \vec{\nabla} \psi \right)_{mn} \middle| m_{\min} \le m \le m_{\max}, \ m_{\max} - m_{\min} + 1 = M \right\}$$

$$\begin{pmatrix} \vec{\Xi} \\ \vec{F} \cdot \vec{\Xi}' + \vec{K} \cdot \vec{\Xi} \end{bmatrix} = \begin{bmatrix} -\vec{F}^{-1} \cdot \vec{K} & \vec{F}^{-1} \\ \vec{G} - \vec{K}^+ \cdot \vec{F}^{-1} \cdot \vec{K} & \vec{K}^+ \cdot \vec{F}^{-1} \end{bmatrix} \begin{bmatrix} \vec{\Xi} \\ \vec{F} \cdot \vec{\Xi}' + \vec{K} \cdot \vec{\Xi} \end{bmatrix} \longrightarrow \frac{d\vec{u}}{d\psi} = \vec{L} \cdot \vec{u}$$

- 2M independent solutions exist depending on initial conditions
- F operator is singular at rational surfaces, and thus 2M independent solutions should be solved between rational surfaces

$$\psi = 0 \qquad \qquad \psi(q1) \qquad \qquad \psi(q2) \qquad \psi = 1$$

Ideal DCON and IPEC uses only M independent solutions to match boundary

- DCON integrates equations from the magnetic axis where only regular solutions are allowed $\vec{\Xi} = \vec{0}$
- Only the half part starts from the axis $\vec{U} = \begin{pmatrix} I \\ I \end{pmatrix}$

$$\vec{U} = \begin{pmatrix} \vec{I} & 0 \\ \phi & \vec{I} \end{pmatrix}$$

- At rational surfaces
 - Non-resonant solutions continuously cross
 - Large resonant solutions are forced to be zero
 - Small resonant solutions are reinitialized
 - Gaussian eliminations (mixing initial conditions) are used to sort out resonant solutions
- At the boundary, M independent solutions reach and can be determined by boundary conditions on the plasma boundary

Ideal solutions have zero resonant fields by shielding currents suppressing islands

 Small resonant solution Normal displacement for a circular case guarantees no resonant field at the rational surface n=1 normal 10⁴ರ್ರೆ [m] Normal field for a circular case 1.5 n=1 normal $\delta B [G]$ 1.0 d=2 surface 0.7880 0.7882 0.7884 0.7876 0.7878 0.5 Normal displacement for a circular case Plasma boundary 0.0 n=1 normal 10⁴్ [m] 0.2 0.4 0.6 0.8 1.0 0.0 Ψ Ideal DCON is very precise by preserving small solutions – which are easy to handle in the frame of 0.0 0.2 0.4 0.6 0.8 1.0 displacements

21

Ψ

Outer-layer solutions can be determined differently with arbitrary jump conditions

- Outer-layer is more ideal
- Outer-layer equations are still E-L equations, and they can be differently determined if inner-layer gives different jump conditions
 - Full relaxation (smooth)
 - Magnetic island size (resonant field)
 - Delta-prime, etc
- Large solutions are now necessary, but their stronger singularity must be more carefully treated

Stepped pressures may be necessary when large resonant solutions are retained

Resonant solutions are

- Large solutions make resonant field singular unless $D_I \ge -\frac{1}{4}$ Stepped pressure P'=0 ensures $D_I = -\frac{1}{4}$ and resonant solutions can reach a constant

Arbitrary jump conditions have been implemented in IPEC

 Large solutions are also reinitialized and preserved as well as small solutions at each rational surface

- Asymptotic power series are used to identify small and large solutions

- In each domain, one can determine M+1 solutions using M edge boundary conditions and 1 jump conditions (Backward matching)
 - Displacement should change parity when crossing rational surfaces

Relaxed solutions have finite resonant fields with finite shielding currents

Solutions with islands can be unstable

- Fixed boundary cylinder analysis with m=2, n=1
 - Islands open with more singular currents unless crossing zero
 - This is unstable and dW<0 mode exists</p>

Solutions with islands can be stable

- Fixed boundary cylinder analysis with m=4, n=2
 - Islands open with less singular currents
 - This is stable and all modes dW>0

Summary and future work (II)

- IPEC has been modified towards arbitrary jump conditions
- Initial test shows that islands can make plasmas unstable even in a very stable case like a cylinder
- Physics may be richer in strong toroidal and high pressure cases
- Thus, different options will be tested
 - Full 2M matrix matching
 - E-L equations for normal b fields
- Modified IPEC will be able to describe evolutions of outer-layer solutions and be coupled with inner-layer calculators

