

Supported by

Office of Science

The continuous improvement of H-mode discharges with progressively increasing lithium coatings in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis** UC Irvine UCLA UCSD U Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S.M. Kaye, C.H. Skinner, D.P. Boyle, J.M. Canik, M.G. Bell, R.E. Bell, T.K. Gray, R. Kaita, H.W. Kugel, B.P. LeBlanc, D.K. Mansfield, T.H. Osborne, S.A. Sabbagh, V.A. Soukhanovskii

> **NSTX Physics Meeting PPPL**, Princeton NJ June 13, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Type I ELMs eliminated, energy confinement improved with lithium wall coatings

2

Edge stability limits pushed beyond global stability limits with lithium coatings in NSTX

3

Plasma characteristics change (mostly improve) continuously with increasing lithium evaporation

- Global characteristics change
 - Recycling: lower and upper divertor D_{α} at t=0.4 sec declines
 - Line average density at t=0.4 sec decline

R. Maingi, NF 2011 to be submitted

- Peak $W_{\text{MHD}},\,\beta_{\text{N}},\,\text{and}$ H-factor increase at constant P_{NBI}
- $-T_e$ and P_e profiles broaden; n_e profile peaks then broadens
- Edge transport declines
 - TRANSP for transport a r/a=0.35, 0.7
 - SOLPS for transport for $\psi_N > 0.8$
- ELM frequency first declines, and then goes to 0
 - n_e profile shifts away from separatrix; pressure profile and bootstrap current follow, reducing drive for kink/peeling modes

Lithium introduced methodically during experiment - first lithium in 2008 run campaign

5

NSTX

ELMs disappeared gradually during experiment in which predischarge Li deposition was varied

6

Transition to ELM-free discharges was not quite monotonic

Global plasma performance improves nearly continuously with increasing lithium

 D_{α} and line-average density from Thomson n_e^{TS} evaluated at t=0.4 sec (fixed time)

 $W_{MHD} \beta_N$, and H97L (global τ_E , not thermal) evaluated at time of peak W_{MHD}

2

T_e and P_e profile peaking factors decrease with increasing lithium

- n_e profile peaking factor first increases as ELM v goes down, and then decreases as ELMs disappear and profile becomes hollow
- T_e and P_e profile peaking factors decrease ~ continuously, good for MHD stability

9

Outline

- Global characteristics change
- Edge electron transport declines
 - TRANSP for D, χ at r/a=0.35, 0.7
 - SOLPS for D, χ for 0.8 $\leq \psi_{N} \leq$ 1, including recycling changes
 - Ion transport increases modestly
- ELM frequency first declines, and then goes to 0
 - n_e profile shifts away from separatrix; pressure profile and bootstrap current follow, reducing drive for kink/peeling modes

TRANSP used to evaluate plasma stored energy and separate global and electron confinement, τ_{E} and τ_{Ee}

- Evaluated at time of peak stored energy, W_{MHD}

Edge χ_e goes down and χ_i goes up; core χ 's unchanged

• Global increase in τ_{E} correlates with drop in edge χ_{e}

Divertor recycling and far edge cross-field transport quantified with data-constrained SOLPS modeling

- SOLPS (B2-EIRENE: 2D fluid plasma + MC neutrals) used to model NSTX experimental data
 - Iterative Method
 - ✓ Neutrals, impurities contributions
 - ✓ Recycling changes due to lithium

Parameters adjusted to fit data	Measurements used to constrain code
Radial transport coefficients D_{\perp} , χ_e , χ_i	Midplane n _e , T _e , T _i profiles
Divertor recycling coefficient	Calibrated D _α camera
Separatrix position/ T _e ^{sep}	Peak divertor heat flux

13

Transport barrier widens with lithium coatings, broadening pedestal (end points of lithium scan)

- Pre-lithium case shows typical H-mode structure
 - $\begin{array}{c} \text{Barrier region in D, } \chi_e \\ \text{just inside separatrix} \end{array}$
- Pedestal is much wider with lithium
 - − D_⊥, χ_e slightly higher outside of ψ_N ~0.95
 - Low D_⊥, χ_e persist to inner boundary of simulation ($\psi_N \sim 0.8$)
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier

CAK RIDGE

NSTX

J. Canik PoP 2011

Discharge Sequence

Discharge Sequence

Inner region: as lithium coatings thicken, transport barrier widens, pedestal-top χ_e reduced

Outline

Global characteristics change

• Edge transport declines

- ELM frequency first declines, and then goes to 0
 - n_e profile shifts away from separatrix; pressure profile and bootstrap current follow, reducing drive for kink/peeling modes
 - n_e profile modification appears to be the key first step, but T_e gradient clamping an important ingredient

T_e, T_i increased and edge n_e decreased with lithium coatings (end points of lithium scan)

19

Pre-lithium discharge near the kink/peeling boundary (end points of lithium scan)

Pre-lithium discharge near the kink/peeling boundary (end points of lithium scan)

Peak pressure gradient moves inwards, p' and j reduced outside $\psi_N \sim 0.95$, reduces kink/peeling drive

ELM suppression correlates with broadening of the density profile, but not the temperature profile

NSTX

Discharge Sequence

ELMy discharges close to the kink/peeling mode stability boundary, while ELM-free discharges are farther away

NSTX PhysicsSeminar - Maingi

Widening of pedestal widths also correlates with movement of the peak gradient locations farther from separatrix

NSTX

(0)

Density profile modification to lithium pumping the key in changing edge stability

Density profile modification to lithium pumping the key in changing edge stability

What causes this nearly continuous dependence of recycling, transport, and stability on increasing lithium?

- Nominal evaporation was ~ 150nm at the outer strike point at ~0.8m at the lowest 110mg rate
 - Toroidal variation gives ~ 60nm minimum deposition
 - Maximum deposition ~ 9x higher, or 500-1400nm! (900 mg)
- Surprising because implantation (pumping) depth expected to be < 10 nm
 - Brooks (JNM 2005) computed an implantation depth of 100 nm for 0.5 keV < E_i < 2 keV
 - Krstic (ISLA 2011) computed an implantation depth of 1 nm for E_i < 30 eV
 - Simple extrapolation for 150-200 eV (about 5*T_e^{div}) yields implantation depth < 10 nm
 - These are all 'ideal' calculations actual surface chemistry of reactive lithium may alter these results

A few hypotheses

- Lithium intercalating into bulk graphite pores?
 - No evidence of this from post-mortem tile analysis by Wampler; lithium confined to first μ m of surface
- Lithium evaporation highly asymmetric?
 - In-situ quartz deposition monitors seem to confirm modeling by Zacharov: toroidal variation at most a factor of two, radial distribution is Gaussian with a 23^o spread
- Lithium pumping complex surface chemistry?
 - In-situ MAPP from JP Allain, and off-site measurements
- Non-divertor PFCs critical in this? (longer time scales)
- Electric fields or other effects increase ion impact energy, and thus implantation depth (J. Harris)
 - How to test this?

Plasma characteristics change continuously with increasing lithium evaporation

- Recycling decreases, normalized energy confinement improves, profiles become less peaked
- Edge electron transport is reduced
 - Electron channel responsible for global τ_{E} increase
 - More than just the drop in recycling source term
- Edge stability improves as density profile and bootstrap current shifts away from separatrix
- Need work to connect these effects to the PWI with lithium, since even the minimum coating thickness is beyond the expected implantation range

Backup

LiTER deposition has toroidal and poloidal variation

- 30cm distance from LiTER to surface
- in NSTX, x-axis should be multiplied by 10x
- For R_{OSP}~0.8m, deposition 1/3 less than max.

New group in NSTX (FY11-12) will focus on combining techniques to address impurity influx with high lithium

Possible directions in NSTX

- Increase the film thickness everywhere: does trend persist?
 - A liquid lithium divertor module was installed in NSTX, which also provided the capability of a liquid plasma facing surface; initial results show LLD no better than lithium on graphite
- Increase the minimum film thickness everywhere, in case those interactions are responsible for the gradual dependence
 - Additional lithium delivery mechanisms to increase the coverage are being implemented, as is a technique to increase the overall coverage by evaporating lithium into a helium working gas
- Increase the film thickness in the divertor strike point regions with the most intense plasma-wall interactions, in case erosion during the discharge is responsible for the trend
 - Develop targeted lithium deposition near the strike point regions, possibly even during discharges, and new designs are being considered

Procedure for fitting midplane n_e, T_e, T_i profiles

- Start with initial guess for D_{\perp} , χ_e , χ_i
- Run simulation for ~10% of confinement time
- Take radial fluxes along 1-D slice at midplane from code

 $-\Gamma^{SOLPS}$, q_e^{SOLPS} , q_i^{SOLPS}

- Update transport coefficients using SOLPS fluxes and *experimental* profiles
 - E.g., $D^{\text{new}} = \Gamma^{\text{SOLPS}}/\text{grad}(n_e^{\text{EXP}})$
 - Here we use fits to profiles used in stability calculations (Maingi PRL '09)
- Repeat until $n_e/T_e/T_i^{SOLPS} \sim n_e/T_e/T_i^{EXP}$

Peak D_{α} brightness is matched to experiment to constrain PFC recycling coefficient: lithium reduces R from ~.98 to ~.9

- For each discharge modeled, PFC recycling coefficient R is scanned
 - Fits to midplane data are redone at each R to maintain match to experiment
- D_α emissivity from code is integrated along lines of sight of camera, compared to measured values
 - Best fit indicates reduction of recycling from R~0.98 to R~0.9 when lithium coatings are applied

CAK RIDGE

NSTX

Midplane and divertor profiles from modeling compare well to experiment for the pre-lithium case

- P=3.7 MW
- R=0.98
- Good match to midplane profiles

- Carbon included: sputtering from PFCs, inward convection to match measured n_c⁶⁺
- Heat flux and D_α, radial decay sharper than experiment

J. Canik PoP 2011 at press

Combining reduced recycling and transport changes gives match to measurements with lithium

Particle and heat sources are reduced with lithium

- Pre-lithium case shows typical H-mode structure
 - Barrier region in D, χ_e just inside separatrix
- Pedestal is much wider with lithium
 - D_{\perp} , χ_e similar outside of $\psi_N \sim 0.95$
 - Low D_⊥, χ_e persist to inner boundary of simulation (ψ_N~0.8)
- Changes to profiles with lithium are due to reduced fluxes combined with wide transport barrier

BES also shows reduced turbulence levels in post-lithium discharges

*Courtesy D.R. Smith, UW

High-k scattering diagnostic shows little change in fluctuation amplitude at $k\rho_s > 10$

0.8

0.6

Scattering

locations

- Pre-to-post lithium transition repeated, ٠ similar profile changes observed
- Fluctuations similar for $k\rho_s > 10$, some • reduction at lower k for the with-lithium case

Edge reflectometry near pedestal top shows reduced density fluctuations with lithium

- Reduced transport in inner region->higher pedestal top pressure
- Reflectometer shows reduced fluctuation level
 - Pre-lithium: strong amplitude/phase fluct.
 - With-lithium: little amplitude fluctuation
 - 3D simulations using Kirchoff integral indicate turbulence level reduced from <a>10% to <1% with lithium

J. Canik PoP 2011 at press

With power reduced so T_e profile matches pre-lithium case, fluctuation amplitudes show broad reduction

Power reduced to 2 MW 0.8 T_e profile similar to pre-lithium • Scattering Fluctuation amplitude reduced across 0.6 • n_e (10²⁰ m⁻³) locations measured kps 10⁻⁷ 0.2 Pre-lithium Post-lithium 0.0 O 4 P_{NBI}=5 MW (δn/n)² (au) 01 ∞ P_{NBI}=3 MW 0.3 P_{NBI}=2 MW T_e (keV) 0.2 10⁻⁹ 141314 0.1 141328 0.0 10¹ 1.1 0.7 0.8 0.9 1.0 $k_{\perp} \rho_s$ Ψ_N J. Canik PoP 2011 at press **CAK RIDGE NSTX** NSTX PhysicsSeminar - Maingi June 13, 2011 44

ETG is unstable in steep gradient edge

- Investigating ETG stability with GYRO [1]
 - $-\chi_{e} \sim 2\text{-}5~(\rho_{e}{}^{2}v_{te}/L_{Te}),$ within range of nonlinear expectations
 - Electrons satisfy gyrokinetic ordering ρ_e/L_{Te} < 1/400
- ETG unstable in steep gradient region ($\psi_N > 0.92$)
 - Threshold likely set by density gradient
 - $\eta_{e,crit} \sim$ 1-1.25 calculated in AUG edge [2], compared to core criteria $\eta_{e,crit} \sim$ 0.8 [3]
- ETG stable at top of pedestal ($\psi_N = 0.88$)
 - Smaller density gradient, threshold likely sensitive to $Z_{\rm eff}T_{\rm e}/T_{\rm i}$ and s/q
- Calculating thresholds and transport are work-inprogress
- [1] J. Candy & R.E. Waltz, PRL (2003); [2] D. Told et al., PoP (2008);
- [3] F. Jenko et al., PoP (2001)

Measured pedestal modifications are consistent with paleoclassical transport

- Pedestal structure model based partly on paleoclassical transport proposed
 - J.D. Callen, UW-CPTC 10-9
 - Depends on resistivity profile->Z_{eff} changes important
- Model recovers χ_e magnitude, shape, rise near separatrix, as well as modest increase with lithium outside $\psi_N \sim 0.95$
- Density profile shape changes with lithium also captured by model

Outer region: T_e gradient nearly constant outside of $\Psi_N \sim 0.95$

Carbon is the dominant impurity species with lithium coatings

- Measured lithium concentration is much less than carbon
 - Carbon concentration ~100 times higher
 - Carbon increases when lithium coatings are applied
 - Neoclassical effect: higher Z accumulates, low Z screened out
- Increase in n_c due to lack of ELMs
 - Can be mitigated by triggering ELMs

