

Supported by

38th EPS Meeting (2011) – Some Comments on **Stability and other Presentations**

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

V1.0

S.A. Sabbagh

Department of Applied Physics and Applied Mathematics Columbia University, NY

> **NSTX Physics Meeting** 18th July, 2011

> > PPPL

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Balance of Monday AM plenary talks covered first wall/ materials, and space plasmas

- **R.** Neu: Preparing scientific basis for all metal wall in ITER
 - rationale for choice of plasma PFCs
 - Iow power loss by dilution, long lifetime PFCs, low dust production, low T codeposition, low Atomic number for low radiative losses
 - ITER PFCs
 - Be in main chamber, Tungsten main material in divertor, and C in divertor in transition region
 - Be influxes: large variation in experiments (by a factor of 10)
 - □ H retention reduced in all-Tungsten AUG
 - References:
 - Suttrop: AUG ELM mitigation (I2.109) a highlight talk
 - Sips: JET DT (O5.127) see comments by J. Hosea
 - Significant attention to first wall/materials in presentations at the meeting

T. Pulkkinen: Plasmas in the Earth-Sun environment

 Included magnetic reconnection and particle acceleration, solar cycle, solar wind composition, plasmas of inner magnetosphere, lack of thermal equilibrium (1 MFP = Sun-Earth distance)

Comments on Some Stability Presentations (I)

Stability Plenary Presentation was a Meeting Highlight

- P. Martin: Near and beyond the limits: MHD stability and its active control
 - <u>Basic concepts</u>: stellarator/tokamak/RFP, ITER, equilibrium and magnetic perturbations in these machines, fast particle modes, β , fusion power gain
 - <u>Disruptions</u>: 4MN forces in JET, 40 MN forces in ITER a significant concern
 - Resonant field amplification: example from JET
 - Instability avoidance / active control:
 - Conducting wall can stabilize kink/ballooning
 - Passive RWM stabilization: MISK results by Jack Berkery shown; DIII-D examples shown
 - Active RWM stabilization in
 - RFPs: RFX / EXTRAP-T2R: Modes not strongly coupled large number (~ 150) control coils
 - Tokamaks: NSTX RWM state space controller highlighted
 - NTM control: sawtooth pacing to predict NTM onset, island phasing to match ECCD phase
 - ELM stability: non-linear stability work (JOREK)

Piero Martin's talk showed NSTX RWM state space controller results as a highlight

□ n = 1 DC applied field

- Simple method to generate resonant field amplication
- Can lead to mode onset, disruption

RWM state space controller sustains discharge

- With control, plasma survives n = 1 pulse
- n = 1 DC field reduced
- Transients controlled and do not lead to disruption
- NOTE: initial run gains NOT optimized

Comments on Some Stability Presentations (II)

- I. Classen: Investigation of fast particle driven instabilities by 2D ECEI on AUG and DIII-D
 - Tutorial on *AE modes, ECE radiometer principles of imaging, AUG ECE imaging diagnostic / similar diagnostic on DIII-D
 - Code results from: NOVA, TAEFL codes discussed (latter is a hybrid gyrofluid code), linear gyrokinetic LIGKA code
 - Change of frequencies measured between modes can be used to determine the q profile
 - Bursting modes identified as BAEs and not off-axis fishbones
 - □ BAEs cause fast ion losses in AUG (energy and pitch angle resolved)
- Esposito: Disruption avoidance by means of ECE waves
 - Iocalized ECRH/ECCD on rational surface, triggered by a disruption precursor were able to hold of disruptions
 - AUG case ECCD triggered by Vloop, response time about 7ms
 - NTM mode locking is held off with ECRH
 - ECRH did not eliminate the NTM just kept it from locking
 - change in density can spoof this need to actively move ECE mirror if density changes, as reonance moves
 - AUG and FTU activities summarized
 - (AUG: r/t TORBEAM, r/t equil. recon., r/t mirror control, reliable operation above Greewald limit)

Comments on Some Stability Presentations (III)

R. Cavazzana: Physics challenges and answers in RFP MA operation

- RFX MA operation 48x4 independent active coils; transition to RFP helical equilibrium
- □ MHD dynamo engine: tearing modes, multiple vs. single helicity states
- □ key parameter for the helical state dominant mode 1/7 vs. Secondary
- results from RELAX (1/4 dominant) vs. MST (1/5 dominant mode)
- \Box control of m = 0 modes, lifetime of helical states

I. Chapman: Sawtooth control in tokamaks

- overview of sawtooth instability good if short period, but may be long in ITER
 - may need to pace sawteeth for ash removal in ITER
- Iong sawtooth period also leads to undesirable NTM triggering
- trapped particles are stabilizing for kink (?)
- co- and counter-passing ions can be stabilizing or destabilizing, depending on where fast particles are deposited
 - objective here is to destabilize the kink to drive sawteeth at higher frequency
- code set being used for these studies MISHKA-HAGIS
- will ECCD control work in ITER?

shear reduction as ECCD sweeps across q =1 surface, sawtooth period was changed in JET

- will ICRH control work in ITER?
 - JET experiment was successful in not triggering NTM

Presentation on ELM mitigation on AUG was a highlight

- W. Suttrop: First observations of ELM mitigation with new active control coils in AUG
 - 4 upper, 4 lower coils used in experiment (n = 2 configuration)
 - □ shows 0.1% field perturbation (see also Fuchs P1.090)
 - **ELM** mitigation shown with n = 2 fields
 - 2 periods of n = 2 pulses used ELMs come back between pulses
 - in ELM mitigated periods, very much smaller ELMs are seen very small density fluctuations (Te fluctuations are larger)
 - stepping up density with n = 2 coils on leads to ELM suppression
 - mitigation means Type-1 ELMs replaced by frequent small ELMs
 - pedestal density increase, T pedestal reduced by 10%, confinement/stored energy essentially unchanged
 - D pellet injection does not trigger ELMs in this state
 - □ there is a density threshold for ELM mitigation, independent of plasma rotation.
 - Key aspects are very different from DIII-D results:
 - there's a strong dependence on density
 - NO dependence on field (up/down) parity
 - NO dependence on q resonances
 - NO dependence on Chirikov parameter NEITHER necessary NOR sufficient

Comments on Some Stability Presentations (IV)

- A. Huber: Radiation heat loads on plasma-facing components of JET during the massive gas injection experiment
 - MGI valve mounted on the top of the machine on JET
 - strong poloidally asymmetric radiation peaking factors in JET
 - □ 10% Ar, 90% D2 injected nearly poloidally symmetric radiation pattern
 - suggests that ITER will need 4 ports for MGI

R. Scannel: Evolution of edge pressure gradient during ELM cycle - MAST

- Notable See comments by J. Hosea
- EPED model (Snyder) applied to MAST, high-n stability, GS2 code to KBM stability analysis, also passed on to ELITE
- □ single ELM cycles, examine/average many cycles 50 profiles in 3 shots
- □ points taken through the ELM cycle; ETB moves slightly inward as ELM cycle advances
- edge high-n unstable region increases in size, from the edge inward 99% flux to 97% flux, or so
- GS2 run to give stability to KBMs KBM had stabilizing FLR effects
 - stability limit falls during the ELM cycle, rather than the pressure gradient strongly increasing
 - claims that infinite-n is a GOOD proxy for the KBM stability in MAST (?)

Comments on Some Stability Presentations (V)

Tuesday posters – some highlights

- Poster on 3D simulation of plasma interactions with edge structures in ITER
 - Electric fields cause relocation of hot spots on tiles
 - (comment) May need to alter edge field to prevent this another potential use for internal nonaxisymmetric coils in ITER
- Liu MARS-Q code: momentum balance has been added, with a JxB and NTV torque model included

Buratti: Kink and tearning modes in JET

- □ kink transforms to island topology over long timescales
 - n =1 kinks onset from betaN about 1.2 4
 - high betaN, high pressure peaking, high qmin are less stable to kink
- □ plasma crosses n = 1 no-wall limit when kink goes unstable
 - but what about at the lowest betas? A: the lowest beta cases don't cross the no-wall limit they are tearing from the start there is no kink phase.
- □ shows ECE discrimination of kink vs, island, 150ms after kink, the island appears
 - Sweet-Parker time for forced reconnection is only 8ms
 - kink growth time is long 70ms, so this is not thought to be a forced reconnection, but no theory
 was given to explain it

Evening sessions had mixed reviews

- Welcome address (Monday): Madame Catherine Cesarsky (High Commissioner to Atomic Energy)
 - Relatively simple presentation for this venue
 - At least 3 European participants expressed embarrassment

ITER session (Tuesday) (Motojima, et al.)

- ITER first plasma delayed at least 1 year due to Japan earthquake/tsunami (coil construction delay)
 - "insiders" quoted at least 2 year delay
- Non-axisymmetric coils still in design
 - Continued worry about cost overruns, and what might be cut
- Compared to past talks, this one lacked energy a bit, and perhaps didn't inspire future researchers
 - Three young researchers questioned what they should be doing to stay in fusion research up to ITER first plasma

Many of the contributed talks and posters did not draw clear conclusions

Many presentations could be called "work in progress"

Excellent venue for poster sessions

Wide boards, landscape format, plenty of room (uncharacteristic for EPS), but...

Poster sessions too short duration

- □ 2 hours (!), and ~ 150 posters in a session
- Scheduled "free time" after the 2 hour session was used to see more posters
 - or to present the two posters I was showing each ran about 3.5 hours