

Supported by

Simulation of microtearing turbulence in **NSTX and scaling with collisionality**

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL **PSI Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Walter Guttenfelder¹, J. Candy², S.M. Kaye¹, W.M. Nevins³, E. Wang³, R.E. Bell¹, B.P. LeBlanc¹, G.W. Hammett¹, D.R. Mikkelsen¹, H. Yuh⁴

> ¹PPPL ²General Atomics ³LLNL ⁴Nova Photonics Inc.

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Outline of talk / Work done (follows TTF plenary talk)

- Experimental motivation: favourable $\Omega_i \tau_{E,th} \sim v_*^{-0.95}$ dependence in NSTX
 - Cause of anomalous χ_e in high- β discharges unknown, scaling to future devices uncertain
 - Microtearing modes unstable in high v_* discharges (r/a \approx 0.5-0.8)
 - Linear stability scaling $\gamma_{\text{lin}} \sim v_e$ qualitatively consistent with experimental trend \rightarrow motivates non-linear simulations using realistic experimental parameters
- First <u>non-linear</u> gyrokinetic microtearing simulations for NSTX (PRL, 2011) <u>New and unique physics</u>
 - Simulations require relatively fine radial grid to resolve resonant current layers ($\Delta_i \sim 0.3 \rho_s$)
 - Significant transport ($\chi_{e,sim} \approx \chi_{e,exp} \approx 5m^2/s$), dominated (~98%) by magnetic flutter ($\delta B_r/B \sim 0.15\%$)
 - Perturbed field lines are globally stochastic (w_{island}>δr_{rat}), test particle stochastic transport model (χ_{st}≈v_{Te}·D_M) agrees to within 25% of simulations
 Transport scaling relevant to experiment
 - Predicted $\chi_{e,sim}/\chi_{GB} \sim v_{*e}^{1.1}$ similar to experimental scaling
 - "Stiff" with ∇T_e , instability threshold important (apparent non-linear upshift)
 - Suppressible by experimental levels of E×B shear
 - Measurement opportunities
 - BES ($k_{\theta}\rho_{s}$ <1), high-k scattering (δ n, k_{r} >> k_{θ}), polarimetry (δ B_r strong, broad & ballooning)

Additional work that could strengthen conclusions

- Summarize newer, more comprehensive linear scans
 - Generally, γ maximum around $Z_{eff} v_{ei} / \omega_{*e} \sim 1-5$, complicates simple $\gamma_{lin} \sim v_{ei}$ interpretation
 - Finite thresholds in β_e , a/L_{Te}, also γ maximum around s/q~1.5
 - We can contrast scaling with ETG, especially differences in Z_{eff} , s/q
 - Highlight experimental range of $Z_{eff} \cdot v_{ei} / \omega_{*e}$, β_e , s/q etc... for v_* , β , I_p , B_t scans
- Clarify influence of Δx in nonlinear v_{ei} and ∇T_e scaling
 - Additional simulations at higher v_{ei} to identify local maximum predicted linearly
 - Limited repeat of v_{ei} scan at higher resolution (& with γ_E) does $\chi_{e,sim}/\chi_{GB} \sim v_{*e}^{1.1}$ hold?
 - Apparent non-linear $(\nabla T_e)_{crit}$ upshift possibly a consequence of sub-optimal resolution?
- Clarify influence of Z_{eff} >1 in nonlinear sims
 - Increasing Z_{eff} tends to destabilize microtearing and shifts γ maximum via $Z_{eff} \cdot v_{ei}$
 - Possibly OK to run simulations with reduced ion model (adiabatic, or one ion with $n_i/n_e = Z_{eff}$)
- Have also tried numerous simulations at other locations (r/a=0.5,0.65,0.7), so far without much success

