





# Measurements of core lithium concentration on NSTX

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U ORNL PPPL **Princeton** U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin** 

#### M. Podestà, R. E. Bell

A. Diallo, B. P. LeBlanc, F. Scotti and the NSTX Research Team

#### NSTX Monday Meeting 10/24/2011





Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo IAEA Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

#### Core Li concentration in NSTX monitored throughout 2010 Run

- Li measurements on NSTX in 2008 indicate low amount of lithium, <0.1 % of n<sub>e</sub>, accumulates in the core
  - Results inferred from a single operating condition
     [M. Bell *et al.*, PPCF 2009]
- About 1.3 kg of lithium evaporated during 2010 Run
  - Different techniques deployed: LITER, Li-Dropper
  - LLD plates also installed in 2010



#### Core Li concentration in NSTX monitored throughout 2010 Run

- Li measurements on NSTX in 2008 indicate low amount of lithium, <0.1 % of n<sub>e</sub>, accumulates in the core
  - Results inferred from a single operating condition
     [M. Bell *et al.*, PPCF 2009]
- About 1.3 kg of lithium evaporated during 2010 Run
  - Different techniques deployed: LITER, Li-Dropper
  - LLD plates also installed in 2010

#### • Li core measurements implemented in 2010

- > How does lithium behave under different conditions?
- > Does it accumulate in the core?
  - Bad, because leads to higher  $Z_{eff}$
  - Good, if it replaces Carbon with similar concentration:

$$Z_{eff} = \frac{\sum_{i} n_{i} Z_{i}^{2}}{n_{e}} \longrightarrow \frac{1\% \text{ of } C : \Delta Z_{eff} = 0.3}{1\% \text{ of } \text{Li} : \Delta Z_{eff} = 0.06}$$

- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    - LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary



- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary
  - Previous results confirmed
    - Core lithium concentration is negligibly small, <<0.1%,  $\Delta Z_{eff}$ =0.006
  - Actual n<sub>Li</sub>/n<sub>e</sub> is 2-4 times lower than what previously reported



- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary



## Suite of CHERS diagnostics allowed simultaneous measurements of C, Li on outer midplane in 2010



| System           | CHERS               | pCHERS           | Li-pCHERS          |
|------------------|---------------------|------------------|--------------------|
| Views            | tangential          | vertical         | vertical           |
| Measured/derived | $n_C, v_{tor}$      | $n_c, v_{pol}$   | $n_{Li}$           |
| quantities       | $n_i, T_i, Z_{eff}$ |                  | $n_{Li}/n_C$       |
| Monitored        | C VI                | C VI             | Li III             |
| species          |                     |                  | C VI               |
|                  |                     |                  | C II               |
| Monitored        | 5290.5 Å            | 5290.5 Å         | 5166.89 Å (Li III) |
| lines            |                     |                  | 5166.67 Å (C VI)   |
|                  |                     |                  | 5151.1 Å (C II)    |
| Radial           | $90-157~{\rm cm}$   | $90-157~{ m cm}$ | 120-157 cm         |
| coverage         |                     |                  |                    |
|                  |                     |                  |                    |

- Active/passive paired views to remove background
- Monitor Li III line (n=7-5) at 516.7 nm
- Data from mid-radius (R~120 cm) out at f<sub>sampling</sub>=100 Hz

## Signal is low, but peaks are clearly visible; other C lines pollute the Li III spectrum: <u>what are we measuring?</u>



- Molecular C<sub>2</sub> band (*Swan band*) partly overlaps Li III
- C VI line (n=14-10) at roughly same wavelength as Li III
- No lithium-free discharges available to estimate relative brightness of C VI and Li III



## Signal is low, but peaks are clearly visible; other C lines pollute the Li III spectrum: <u>what are we measuring?</u>



- Molecular C<sub>2</sub> band (*Swan band*) partly overlaps Li III
- C VI line (n=14-10) at roughly same wavelength as Li III
- No lithium-free discharges available to estimate relative brightness of C VI and Li III ... on NSTX
  - > But, "back in the good, old days"...

### TFTR data indicate that C VI (n=14-10) to C VI (n=8-7) ratio is ~3.6 %; how does it scale to NSTX?



> About 50% of brightness @516.7nm on NSTX can be due to C VI

#### Combine information from C-pCHERS and Li-pCHERS to fit composite Li III, C VI and Swan band spectra



- Fit background-subtracted spectrum assuming
  - All species have same T<sub>i</sub>
    - Use apparent (line-integrated) T<sub>i</sub> from C-pCHERS as reference
  - Fixed wavelength for Swan head-band
  - Fixed wavelength for C VI (n=14-10) based on C VI (n=8-7) measurement
- Scan ratio of C VI to Li III brightness, infer FWHM ~  $(T_i/m_i)^{\frac{1}{2}}$ 
  - Inferred T<sub>i</sub> for Li III changes with ratio
  - Look for T<sub>i</sub> consistency:

> Correct ratio such that  $T_i^{Li} = T_i^C$ 

On average, 50% of brightness is from C VI Large uncertainties, +/- 25%

### Given all uncertainties in the analysis, results actually represent an <u>upper limit</u> for n<sub>Li</sub>

- Full analysis also includes
  - NB attenuation
  - Reference to main CHERS, re-scale to local values
  - (Compensate for randomly closing lenses, et al. ...)
- Results *without* corrections for C VI/Li III brightness ratio shown in the following viewgraphs
  - Upper limit for n<sub>Li</sub>
  - > Actual lithium density (concentration) could be 2-4 times smaller than what shown hereafter



### Outline

- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary



#### Typical H-mode, moderate NB power discharge shows only trace amounts of lithium in the core



- ELM-free, 800 kA discharge
- Usual increase in Z<sub>eff</sub> during the pulse



#### Typical H-mode, moderate NB power discharge shows only trace amounts of lithium in the core



- Lithium density increases in time, but remains low
  - Max 2% of carbon density
  - <<0.1% of electron density</p>

- ELM-free, 800 kA discharge
- Usual increase in Z<sub>eff</sub> during the pulse



#### Both lithium and carbon relative concentrations increase with toroidal field and plasma current



\*assume fit goes through origin

#### Plasma current has larger effect. Lithium remains insignificant.



#### Aspect ratio (-> *inner gap*) scan shows no effect on average Lithium - and Carbon - concentrations



- Are lithium/carbon sputtered in from the CS?
- Four discharges analyzed
  - All start the same way
  - Inner gap (aspect ratio) increased after ~200 ms
  - Other parameters change at the same time
    - Elongation, bottom gap, ...
- No variation of n<sub>Li</sub> observed between shots
  - Slight decrease of n<sub>Li</sub> in time
  - Carbon seems to saturate



### Outline

- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary



#### Look for variations in edge conditions in a wellcontrolled experiment: LLD temperature scan

- LLD temperature increased from 90°C to 290°C
  - 'Passive' heating from plasma, ~10°C/shot



#### LLD well above Li melting temperature does not affect significantly Lithium and Carbon core concentration



shots: 142488 - 142522

- LLD temperature increased from 90°C to 290°C
  - 'Passive' heating from plasma, ~10°C/shot
- No systematic change in lithium/carbon concentrations
  - Slight decrease above 200°C, but fueling also changed



#### LLD well above Li melting temperature does not affect significantly Lithium and Carbon core concentration



shots: 142488 - 142522

- LLD temperature increased from 90°C to 290°C
  - 'Passive' heating from plasma, ~10°C/shot
- No systematic change in lithium/carbon concentrations
  - Slight decrease above 200°C, but fueling also changed
- Cumulative effects of lithium evaporation dominant?
  - > Look for changes with Li introduced *during* shot

#### 'LITER-only' and 'LITER plus Li-Dropper' discharges show different edge features, similar overall parameters



| shot no. | LITER              | Li-Dropper                                               |
|----------|--------------------|----------------------------------------------------------|
| 140559   | $240 \mathrm{~mg}$ |                                                          |
| 140562   | 240  mg            | $240 \text{ mg} + 240 \text{ mg/s} \times 1.2 \text{ s}$ |
| 140566   | $240 \mathrm{~mg}$ | $0 \text{ mg} + 100 \text{ mg/s} \times 1.1 \text{ s}$   |
| 140572   | 120  mg            | $240 \text{ mg} + 120 \text{ mg/s} \times 1.2 \text{ s}$ |



 Comparable amount of lithium from LITER (pre-shot) and from Li-Dropper (pre/during shot)

#### Both carbon and lithium concentrations saturate in time; evolution is independent of conditioning technique



- Very similar discharges
  - Same configuration
  - Same parameters  $(n_e, T_e)$
  - Clean comparison for the two techniques
  - Large Carbon content
    - Edge Z<sub>eff</sub>=4-5 after 400 ms
- Lithium saturates to n<sub>Li</sub>/n<sub>e</sub>~0.04%

#### *Is there any condition for which lithium core concentration is n<sub>Li</sub>/n<sub>e</sub>>0.1% ?*



### Outline

- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary



### Discharges with Li *blob* on the lower divertor may provide large Li source, boost core n<sub>Li</sub> up





#### Interaction with Li blob clear from D-alpha



- Plasma interacts strongly with Li blob (e.g. 360, 550 ms)
- Eventually, plasma disrupts

#### Plasma survives after first interaction with Li blob, followed by increase in core Li concentration



- Li-pCHERS spectrum around 360 ms dominated by Li
- Carbon decreases,  $n_C/n_e \sim 1\%$  or less (low for NSTX)

## Record $n_{Li}/n_{C}$ ~25% attained here, with $n_{Li}/n_{e}$ ~0.2% and an overall decrease in carbon.



- Large, localized Li source can transiently lead to higher n<sub>Li</sub> in the core (as opposed to evaporated lithium or small granules)
- More similar to 'pellet', but completely un-controlled

### Outline

- Analysis of CHERS lithium measurements
- Results for NB-heated, H-mode discharges
  - Reference case and scan of operating parameters
    - Toroidal field, plasma current, aspect ratio
  - Dependence on edge conditions, Li-conditioning techniques
    LITER, Li-Dropper, LLD
  - 'Anomalous events': Li-blob on lower divertor
- Summary



#### **Summary**

- Core Li concentration monitored throughout 2010 Run
- Broad range of operating conditions covered
  - B<sub>tor</sub>, I<sub>pl</sub>, aspect ratio/inner gap
  - Different Li conditioning techniques
  - Anomalous events, e.g. Li blobs on divertor
  - (Plasma shape, ELMs, large MHD modes not shown here)

#### Summary

- Core Li concentration monitored throughout 2010 Run
- Broad range of operating conditions covered
  - B<sub>tor</sub>, I<sub>pl</sub>, aspect ratio/inner gap
  - Different Li conditioning techniques
  - Anomalous events, e.g. Li blobs on divertor
  - (Plasma shape, ELMs, large MHD modes not shown here)
- > Plasma configuration has little effect on n<sub>Li</sub>
- > Only systematic dependence observed is on  $B_{tor}$ ,  $I_{pl}$ 
  - Attributed to general improvement in confinement
- > Negligible Li concentration is a robust property of NSTX
  - $n_{Li}/n_e << 0.1\%$
  - Carbon remains dominant impurity even after massive (hundreds of milligrams) Li evaporation
- Investigation of C (and Li) sources and transport in progress (F. Scotti's PhD thesis)
- High C concentration represents a barrier for Li influx?
  - Li transported outward by scattering on heavier C ions

#### **Backup viewgraphs**



### Suite of CHERS diagnostics allowed simultaneous measurements of C, Li on outer midplane in 2010



### Line-integrated data are representative of average trend, upper limits of core lithium concentration



- Assume all measured brightness is from Li III
- Reasonable agreement in profile shape, time evolution



#### Uncertainties in C VI/Li III brightness fraction and cross sections make full inversion difficult



Shown is (smoothed) C VI to Li III brightness fraction

- Large spread in values as a function of radius, time
- Inversion must take into account line blending, profile of each species
- Many cross sections for C VI (n=14-10) missing
- Cross sections at low (E<40 keV) NB energy inaccurate</li>

## Shifting plasma far from divertor in ELM-free discharges appears to reduce impurity accumulation



- Same  $B_{tor}$ ,  $I_{pl}$
- Bias plasma up after ~150 ms
- Both lithium and carbon concentrations reduced during current flat-top
- > Reduced influx from divertor?
- How representative are these two discharges?

#### Analysis of ELMy discharges with increasing |dr<sub>sep</sub>| (downward) show different effects for C and Li



• Bias plasma toward lower divertor



#### Analysis of ELMy discharges with increasing |dr<sub>sep</sub>| (downward) show different effects for C and Li



- Bias plasma toward lower divertor
- Lithium concentration not strongly affected
- Carbon conc. decreases for plasmas with ELMs
  - Rather insensitive to ELM frequency





### Try with more controlled experiment: ELM triggering (n=3, jogs); MHD has strongest effects, unclear conclusions



140976: no ELM pacing (reference) 140972: static n=3 + vertical jogs 140971: vertical jogs only

- Strong MHD *before* ELM triggering phase
- Changes observed in n<sub>Li</sub>, n<sub>C</sub>
- How relevant are these conditions?
  - Strong modes
  - Plasma locks, v<sub>tor</sub> collapses
  - Loss of confinement