

Low-k turbulence and correlation length dependencies in the edge region in quiescent periods in NSTX H-mode plasmas

D. Smith, R. Fonck, G. McKee, D. Thompson, and I. Uzun-Kaymak

University of Wisconsin-Madison

NSTX Physics Meeting October 25, 2011

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Overview

- Motivation
 - Identify the low-k turbulence modes present in NSTX plasmas
 - Assess the impact on transport
- Objective (initial)
 - Quantify poloidal and radial correlation lengths and decorrelation times of low-k turbulence
 - Identify parametric dependencies
 - With simulations, identify low-k modes present
- Strategy

- From 2010 BES data, identify quiescent H-mode periods (MHD quiescent and ELM-free; not "QH-mode")
- Build database with poloidal correlation lengths (L_C) from BES poloidal array
- Perform **regression analysis** to identify L_C scalings
 - For example, do correlation lengths increase or decrease at higher ∇n_e ?

Outline

- Poloidal L_c calculations and database for quiescent periods in H-mode plasmas at R=140 cm
- Regression analysis to identify L_c parametric scalings
- Point spread function calculations
 - Characterize BES spatial and k-space resolutions
 - Synthetic BES diagnostic for simulations
- Future work

BES measures localized density fluctuations by observing D_{α} emission from collisionally-excited NB particles

- 32 detection channels with individual telescope and filter assemblies
- 56 sightlines in radial and poloidal arrays spanning core to SOL
- 2 MHz sampling
- $k_{\perp}\rho_i \le 1.5$; 2-3 cm spot size
- Field-aligned optics with high throughput (etendue = 2.3 mm²-ster)

Database populated with 130+ quiescent periods from 29 shots with B_T=4.4 kG

NSTX Physics Meeting – D. Smith – October 25, 2011

BES signals can show complex activity during quiescent periods – possibly due to plasma edge motion

NSTX WISCONSIN NSTX Physics Meet

 \bigcirc

Poloidal L_c obtained from BES poloidal array at R=140 cm

NSTX WISCONSIN

 \bigcirc

Poloidal L_c at R=140 cm are typically 5-20 cm and coherence spectra can extend up to 20-100 kHz

WISCONSIN

NSTX Physics Meeting – D. Smith – October 25, 2011

Poloidal L_c database includes many local and global parameters

- Constructed from 2010 BES data using R=140 poloidal array
- Quiescent periods in H-mode plasmas
 - ELM-free and MHD quiescent
- 130+ entries from 29 shots with $B_T = 4.4 \text{ kG}$
- 15-40 ms periods capture slow BES signal evolution
- Local plasma parameters in database
 - $\begin{array}{l} \ \mathsf{q}, \, \hat{s}, \, \mathsf{q}/\hat{s}, \, \mathsf{n}_{\mathsf{e}}, \, \mathsf{T}_{\mathsf{e}}, \, \mathsf{T}_{\mathsf{i}}, \, \mathsf{V}_{\mathsf{t}}, \, \mathsf{sqrt}(\mathsf{n}_{\mathsf{e}}, \, \mathsf{T}_{\mathsf{e}}, \, \mathsf{T}_{\mathsf{i}}), \, \nabla \, (\mathsf{n}_{\mathsf{e}}, \, \mathsf{T}_{\mathsf{e}}, \, \mathsf{T}_{\mathsf{i}}, \, \mathsf{V}_{\mathsf{t}}), \\ 1/L_{(\mathsf{ne}, \, \mathsf{Te}, \, \mathsf{Ti})}, \, \kappa, \, \delta_{\mathsf{bot}}, \, \mathsf{T}_{\mathsf{e}}/\mathsf{T}_{\mathsf{i}}, \, \beta_{\mathsf{e}}, \, \beta_{\mathsf{t}}, \, \nu_{\mathsf{e}}, \, \nu_{\mathsf{i}} \end{array}$
- Global/engineering parameters in database

 $-I_P$, P_{NB}, peak quantities (e.g. n_e), LCFS geometry

L_{C} database for R=140 cm poloidal array spans $n_{e} = 1-3 \times 10^{13}/cm^{3}$ and $T_{e} = 50-300 \text{ eV}$

🛈 NSTX 🕅 WISCONSIN

NSTX Physics Meeting – D. Smith – October 25, 2011

Regression analysis can identify parametric scalings in the L_c database

- Stepwise multivariate linear regression - "Multivariate linear": $L_C = \beta_0 + \sum \beta_i x_i$
 - "Stepwise": iteratively test additional parameters (x_i) for statistical significance and RMSE reduction
 - Only **local physics** parameters in this presentation (e.g. q, n_e , κ , T_e/T_i)
- Normalized form allows **direct comparison** of parameters' scaling coefficients (β^N):

$$L_C = \overline{L}_C + \sum \beta_i^N \frac{x_i - x_i}{\sigma_{xi}}$$

• Assessing regression fits and parameter scalings

- Good fits exhibit large R² (amount of L_C variation captured by fit), small RMSE, small H₀ probability (null hypothesis: fit parameters do not explain L_C variation), and contain only **statistically significant** parameters
- Good parameter scalings (e.g. β^N for n_e) appear in many fits with β_N values clustered around a typical value and comparable to or larger than fit RMSE

Consistent scalings ($\beta^{N's}$) emerge from regression fits

34 fits found by initializing stepwise search with every 2, 3, and 4 parameter combination

We can now make statements like "poloidal correlations lengths in the edge region increase at higher q" with some justification

Among equilibrium parameters, positive scalings emerge for q and δ_{bot} and a negative scaling for \hat{s}

 L_{C} dependence on parameter with non-parameter dependence removed (slope is β^{N} coefficient). Compare to scatter plots on pg 10.

Among species parameters, positive scalings emerge for n_e and ∇n_e , and negative scalings for T_i and T_e/T_i .

Point spread function calculations indicate NB excited state lifetimes and fieldline trajectory increase radial size by approx 40%

Model	Ideal fiber	Focusing optics	Optical+NB decay	Optical+NB intensity	Optical+fieldline excursion	All effects
Y 1/e ² width (cm)	3.2	4.0	4.4	3.2	4.4	4.4
Y displacement (cm)	0.0	0.0	0.5	0.0	-0.5	0.3

-5

-5

0 Y axis (// to midplane)^Z axis

5

Y axis (// to midplane)^Z axis

0

Z axis

NSTX WISCONSIN

-5

-5

5

Y axis (// to midplane)

-5

Future work

- Additional analysis of 2010 BES data
 - Extend regression analysis to...
 - Global/engineering parameters
 - Decorrelation times and radial correlation lengths
 - Pre- and post-LH transition periods
 - Quantify **poloidal flow fluctuations** using time delay estimation (TDE) techniques
 - Identify zonal flows, if present
 - Assess predator-prey model of turbulence and flow shear
- Perform edge turbulence simulations
 - Complete PSF calculations for BES synthetic diagnostic
 - Validate simulations using analysis results from 2010 BES data
- Enhance BES measurement capabilities for NSTX-U
 - Expansion to 64 detection channels for better utilization
 - 2D imaging with high-resolution edge sightlines for better coverage

Summary

- Poloidal correlation lengths calculated from BES measurements
 - Decorrelation times are in hand
 - Radial correlation length calculations and TDE tools are under development
- Created database of poloidal L_C at R=140 cm for H-mode quiescent periods
 - 130+ entries from 29 shots in 2010
- Performed regression analysis to identify parametric scalings
 - Analysis indicates L_C **increases** at higher q, δ_{bot} , n_e , and ∇n_e ; L_C **decreases** at higher \hat{s} , T_i , and T_e/T_i .
- Initial PSF calculations indicate excited state lifetimes and fieldline trajectory increase the radial spot size by 40% at R=140 cm
- Future plans
 - Extend analysis to decorrelation times, radial correlation lengths, global/ engineering parameters, pre-/post-LH transition, and flow fluctuations
 - Perform edge turbulence simulations
 - Enhance BES capabilities for NSTX-U