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Introduction

• Intrinsic torque and rotation generation have been observed 
by passive CHERS, in NSTX Ohmic L-H transition

– There were Ohmic H-mode plasmas in NSTX (C. Bush, S. Kubota)
– Passive CHERS provides ion temperature and rotation information

• Rotation jump is clear and perhaps highly free from ‘non-
intrinsic’ torques 

– No NBIs, weak NTVs, short periods for rotation evolution

• Study of intrinsic torque in NSTX can provide unique 
information and data for STs

– Intrinsic torque and rotation vs. thermodynamic forces
– Intrinsic torque and rotation scaling, and Rice scaling
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Intrinsic rotation in Ohmic L-H transition (#1)

• Rotation is increased by ~10km/s in L-H and stays in H-mode  
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Intrinsic rotation in Ohmic L-H transition (#2)

• Rotation is increased by ~10km/s in L-H and slightly evolves in H-mode  
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Intrinsic rotation in Ohmic L-H transition (#3)

• Rotation jump is clear in L-H even if tearing mode is present
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Passive CHERS provides (Ti,Vφ) profile evolution 
information using background Carbons

6

• Passive CHERS measures 
Carbon impurities (C5+) in the 
background and gives (Ti,Vφ) 
profile information 

• Passive and active CHERS 
agree well in the edge, 
indicating differences can be 
ignored and ExB can be 
assumed

– ExB rotation can be measured 
by ignoring diamagnetic 
contribution (since Z is high), 
but toroidal rotation for main 
ions may be different – will be 
discussed later

• (Ti,Vφ) profiles perhaps can be 
fully used in the edge if 
adequate fitting procedure is 
added

Passive CHERS

H-mode

Valid

[Bell, POP 17, 082507 (2010)]
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Secondary fitting is used for (Ti,Vφ) profiles
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L to H (Note different scales)

Zero Edge Zero Edge

Bad signal

Bad signal

* Errors are propagated to the final analysis and used to rule out bad signals 
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Profile evolution clearly shows rotation jump, 
associated with ion temperature change 

• Rotation clearly jumps through L-H 
transition, and stays in quite a long 
time afterwards

• Ti (gradient) also clearly changes 
through L-H transition, and slowly 
evolves afterwards

• Te and ne (gradient) gradually increase 
through L-H transition

In 10ms around L-H transition,
• ∇Te, ∇ne at the end of pedestal
• ∇Ti, Vφ at the top of pedestal 
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Rotation change during Ohmic L-H transitions is 
dominantly driven by intrinsic torque 

• Simplified form of rotation evolution is 

• One can study the residual term alone when removing input torque, NTV, 
and zeroing rotation, which is however impossible in NSTX

• Nonetheless, through Ohmic L-H transition: 

• Here the goal is to investigate 
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Best correlation can be found between Δ(∇Ti, Vφ)
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Correlations are not good for Δ(∇Te, ∇ne, Vφ)

11



NSTX NSTX Monday Physics Meeting – Intrinsic Rotation in NSTX (J.-K. Park) January 9, 2012

Experiment and recent theory agree well with 
small Prandtl number

• ExB shear is directly related to      
thermodynamic force

• A theoretical form for intrinsic 
rotation generation is given by

• Experiment and theory correlates 
well with Pr~0.53

– This small Prandtl number is 
consistent with previous NSTX 
momentum transport studies
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Uncertainty exists due to difference between 
impurity and main ion rotations

• Difference between main ion rotation and impurity rotation may not be 
ignorable when rotation is low

• The 1st order gyro-expansions of moment equations give

• For Carbon species (Z=5-6) or Argon species (Z=13-14), diamagnetic 
rotations and poloidal flows can be ignored

• For main ions,
– If poloidal flows follow neoclassical predictions, two rotations are similar

– If poloidal flows are negligible, diamagnetic corrections are needed 
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Uncertainty with diamagnetic or poloidal rotation 
is as large as intrinsic rotation

• Diamagnetic correction for measurements:

• Diamagnetic contribution in theory: 
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Intrinsic torque scaling is essentially needed 
rather than intrinsic rotation scaling

• Torque is more fundamental than rotation in theory
• Intrinsic torque is better correlated with ∇Pi  than ∇Ti
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• NSTX intrinsic rotation through L-H transitions may follow empirical 
scaling of conventional tokamaks (by Rice)

• However, NSTX results yield small proportional factor due to large 
toroidal β and q* in ST  

Comparison with other tokamak scaling (by Rice) 
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[Rice, NF 47, 1618 (2007)]
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• NSTX data do not follow Rice scaling?

Comparison with Rice scaling 
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Scaling for Ohmic plasmas
(J.-K. Park)

Scaling from NBI plasmas
(W. M. Solomon)
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Summary and Future work

• NSTX intrinsic rotation studies are successfully done through 
Ohmic L-H transitions, using Passive CHERS

• Best correlation can be found between (∇Ti, Vφ) and (∇Pi, τφ) 
• Theory and experiment agree well with small Pr
• However, uncertainty with diamagnetic or poloidal rotation is as 

large as intrinsic rotation itself 
• This smallness of intrinsic rotation can be seen by 

• NSTX intrinsic rotation may follow empirical scaling with small 
proportional factor, but does not follow Rice scaling 

• Future work may include 
– TRANSP and NCLASS calculations
– Intrinsic NTV calculations
– Pinch and diffusivity calculations?
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It is hard to estimate other terms of momentum 
transport in this analysis

• Simplified momentum transport:

• It requires at least three time slices to estimate both quantities
• However, changes except L-H transition are not apparent and would not 

be reliable in terms of errors  
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