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Introduction

* |ntrinsic torque and rotation generation have been observed
by passive CHERS, in NSTX Ohmic L-H transition
— There were Ohmic H-mode plasmas in NSTX (C. Bush, S. Kubota)
— Passive CHERS provides ion temperature and rotation information

« Rotation jump is clear and perhaps highly free from ‘non-
Intrinsic’ torques
— No NBIs, weak NTVs, short periods for rotation evolution

 Study of intrinsic torque in NSTX can provide unique
information and data for STs
— Intrinsic torque and rotation vs. thermodynamic forces
— Intrinsic torque and rotation scaling, and Rice scaling
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Intrinsic rotation in Ohmic L-H transition (#1)

* Rotation is increased by ~10km/s in L-H and stays in H-mode

I I
(a) Plasma current !
= ' HBL ' | -
— E 141 [ ~f
E, : 141730 i - - &
o £ e L=
- - L : =
T T
(b) Btored energy I
— 80F oT =
2 B0E --}-- ' =
% '_é 402 ...................................... AN T z
= 20F 3
g u: =

1 i

B

:(e) Mirnov

) SN I el ISV SR
- H
< o
5] b=
(] s o PO IS SR B b
— N | H H
’ 0.0 0.1 0.21 0.3 0.4 o5

I Time [s] I

NSTX NSTX Monday Physics Meeting — Intrinsic Rotation in NSTX (J.-K. Park) January 9, 2012



Intrinsic rotation in Ohmic L-H transition (#2)

Rotation is increased by ~10km/s in L-H and slightly evolves in H-mode
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Intrinsic rotation in Ohmic L-H transition (#3)

Rotation jump is clear in L-H even if tearing mode is present

(a) Plasma current

T 1000 :141751_*_
=, - N et T e b T
— 80 — =
2, 60 -
E 40 ; ................................................ ;
= . -
= ng =

(c) Toroidal Hotatlon
...‘!n.t_r_i_n.sic drive ——=

f1gmmmmmmmmmﬁ"[L¢Q¢¢¢¢§"'_“m :

e | (d) D-alpha |

r LH_mode/ N

(e) Mirnnvlv

Tearing

0.1 0.2 0.3
Time [s]

o [TTTTETTTT

NSTX NSTX Monday Physics Meeting — Intrinsic Rotation in NSTX (J.-K. Park) January 9, 2012



Passive CHERS provides (T;,V,) profile evolution
information using background Carbons

Passive CHERS
[Bell, POP 17, 082507 (2010)]

117257 CHERS

40— - .

Active CHERS
Passive CHERS

120! 130

Radius [cm]

 Passive CHERS measures

Carbon impurities (C°*) in the
background and gives (T,V,)
profile information
Passive and active CHERS
agree well in the edge,
indicating differences can be
ignored and ExB can be
assumed
— ExB rotation can be measured
by ignoring diamagnetic
contribution (since Z is high),
but toroidal rotation for main
ions may be different — will be
discussed later
(T;,V,) profiles perhaps can be
fully used in the edge if
adequate fitting procedure is
added

@ NSTX
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Secondary fitting is used for (T;,V,)) profiles

#115516 t=185ms | to H (Note different scales) _ #115516 t=195ms
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* Errors are propagated to the final analysis and used to rule out bad signals
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Profile evolution clearly shows rotation jump,
associated with ion temperature change

#115516 (a) Rotation
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(c) Density
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Rotation clearly jumps through L-H
transition, and stays in quite a long
time afterwards

T, (gradient) also clearly changes
through L-H transition, and slowly
evolves afterwards

T, and n, (gradient) gradually increase
through L-H transition

In 10ms around L-H transition,
VT,, Vn_, T at the end of pedestal
VT, V, T at the top of pedestal
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Rotation change during Ohmic L-H transitions is
dominantly driven by intrinsic torque

Simplified form of rotation evolution is

input pinch

0 ov, R
at(mnRV) Tt — Ty — V- I1, ,where IT, =—mnR| y, —~ p= ViV, |17,

One can study the residual term alone when removing input torque, NTV,
and zeroing rotation, which is however impossible in NSTX

Nonetheless, through Ohmic L-H transition:

T.

input

=0and Ty, =T,, =0

ignoring self -dependent evolution on V, inshort time (10ms)

eg%¥:V+C+V:C&+Omﬂ

0
a(mnquj)z—V-Hfﬂ,

OT,;
Here the goal is to investigate AM](W%)OCA[V Iy ]OCA{ (; > 8?}
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Best correlation can be found between A(VT;, V)

AV [km/s]

Rotation vs. lon temperature
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Correlations are not good for A(VT,, Vn,, V,)

Rotation vs. Electron temperature
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Experiment and recent theory agree well with
small Prandtl number

« ExB shear is directly related to
thermodynamic force Experiment vs. Theory

McDevitt, POP 16, 052302 (2009 s -
[ _ ( ) 13 . Pr=0.53 ]

* A theoretical form for intrinsic : i
rotation generation is given by -
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« Experiment and theory correlates - L
well with Pr~0.53

— This small Prandtl number is . R T R

consistent with previous NSTX -4 -2 0 2 4
momentum transport studies AVy,Pr [kmis]
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Uncertainty exists due to difference between
impurity and main ion rotations

« Difference between main ion rotation and impurity rotation may not be
ignorable when rotation is low

« The 1st order gyro-expansions of moment equations give

C
V..V d@ 1 (ﬂ)—qVKVH _ d@ 1 dP, dT,
dw Zen, dy dw Zendw Zedw

» For Carbon species (Z=5-6) or Argon species (Z=13-14), diamagnetic
rotations and poloidal flows can be ignored

 For main ions,

— If poloidal flows follow neoclassical predictions, two rotations are similar

V.Vo=V, Vo R 1AL g, T dn
en dy edy en. dy

— If poloidal flows are negligible, diamagnetic corrections are needed
1 dP T, dn, 1dT,

V..-Vp=V,-Vp———7=-=V_-Vp -
en, dy en. dy edy
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Uncertainty with diamagnetic or poloidal rotation

Is as large as intrinsic rotation

« Diamagnetic correction for measurements:

Experiment vs. Theory
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» Diamagnetic contribution in theory:
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Intrinsic torque scaling is essentially needed

rather than intrinsic rotation scaling

» Torque is more fundamental than rotation in theory
* Intrinsic torque is better correlated with VP, than VT,

o(nRV,)
V,cVT,s07, c ———ocnVT, c VB ?
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Comparison with other tokamak scaling (by Rice)

« NSTX intrinsic rotation through L-H transitions may follow empirical
scaling of conventional tokamaks (by Rice)
« However, NSTX results yield small proportional factor due to large

toroidal 3 and g. in ST
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Comparison with Rice scaling

* NSTX data do not follow Rice scaling?

Scaling for Ohmic plasmas Scaling from NBI plasmas
(J.-K. Park) (W. M. Solomon)

Rice scaling
SR kb~ S
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Summary and Future work

 NSTX intrinsic rotation studies are successfully done through
Ohmic L-H transitions, using Passive CHERS

* Best correlation can be found between (VT,, V) and (VP;, 1,)
* Theory and experiment agree well with small Pr

* However, uncertainty with diamagnetic or poloidal rotation is as
large as intrinsic rotation itself
1

* This smallness of intrinsic rotation can be seen by Vg EﬁVDiamagnenc

« NSTX intrinsic rotation may follow empirical scaling with small
proportional factor, but does not follow Rice scaling

e Future work may include
— TRANSP and NCLASS calculations
— Intrinsic NTV calculations
— Pinch and diffusivity calculations?
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It is hard to estimate other terms of momentum
transport in this analysis

« Simplified momentum transport:

a(mnRV )—V mnR Ny ~V iV, [+1I17 > Eor -t
ot $) Z{/ﬁ or pinch re ot RS T¢

* It requires at least three time slices to estimate both quantities

 However, changes except L-H transition are not apparent and would not
be reliable in terms of errors
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