The future for lithium conditioning in NSTX

Michael Bell

NSTX Physics Meeting / Lithium Research Topical Science Group Meeting February 13, 2012

Lithium application has brought real benefits but ... things will have to change for NSTX-U

- Started with pellets in 2005 painfully slow but effects intriguing
- Prototype LITER in 2006 limited capability but worth developing
- Reliable LITER re-aimed at lower divertor in 2007
- Dual LITERs in 2008; first use of powder dropper
- Lithium dependence undeniable in 2009 80% of shots by end
- The LLD in 2010: lithium to the max; supplement with droppers
- Cold-turkey in 2011
- Recovery is possible and desirable

Lithium from pellets produced a density reduction in L-mode but benefit short-lived

- Injected Li pellets into 10 ohmic He discharges: total ~30mg of Li
 - Following sequence of ohmic He cleanup at outset
- Ran specifically designed NB heated plasma with minimal fueling

LSN discharges, 0.8MA, 0.45T, 4MW NBI, L-mode;

Density after gas puff reduced by factor >2 after lithium coating

- After pumpout, rate of density rise less than NB fueling in LSN case

Effect had dissipated on second similar shot

Development of LITER system in 2006 changed the course of NSTX operation and its overall program

- Major effort by Mansfield, Timberlake, Kugel, Roquemore, Kaita, Majeski ...
- Experiments, now in H-mode (& RS), revealed many of the familiar benefits
 - Higher *central* T_e , T_i ; global τ_E improved
 - Reduction in density for same gas input; reduced D_{α} and oxygen emission
 - Reduced poloidal flux consumption
- Benefits transient and not apparent unless ~400mg deposited
 - Oxygen reduction did persist for several days
 - Clear evidence for migration of lithium away from divertor strike points
 - Concerns about passivation by H_2O , CO_2 ; intercalation into graphite
- We concluded we needed bigger artillery and to aim at the target
- LITER-1d in 2007: evaporated ~80g into NSTX
 - ELMs suppressed \Rightarrow impurity accumulation and radiative collapse in ~1s
- Dual LITERs with bigger barrels & shutters in 2008: 108g on PFCs in 2008
- Increased to 285g in 2009 80% of discharges with evaporation
- Finally >800g in 2010 and kicked our previous boron habit

The benefits of lithium blinded us to the lingering issue that we still could not control the density

- Lower density was achievable early in discharges with lithium but likelihood of deleterious locked modes increased
- \Rightarrow We increased the gas fueling to compensate
- Heavy gas puffing is used in NSTX to allow very fast current ramp-up

- D_α camera showed lower neutral D density at outboard midplane with Li
- Also reduced density early after running He and RF conditioning discharges
- 2×10^{21} D would need only ~2.3mg of lithium to form LiD
 - Not much of the applied lithium actively contributes to the pumping
- Had planned to develop scenarios with less fueling in 2011 (sigh)
- Upgrade will have Vs to allow varying I_p ramp rate to see if that helps

Lithium can become contaminated by reactions with residual water, mainly during evaporation

- Deposition rate on lower divertor 1 20 x 10¹⁵ Li cm⁻²s⁻¹
 Water impingement on IBD equals 1.3 x 10¹⁵ cm⁻²s⁻¹ Li rate at ~3 x 10⁻⁷ Torr
- RGA 17–20 AMU equivalent pressure up to 10⁻⁶ Torr during deposition
 Difficult to reconcile RGA with ion gauge pressure (which is usually lower)
- To minimize contamination, keep NB valves open during evaporation!
- No evidence from QMB for oxidation of the bulk lithium *after* evaporation
- Plasma accesses deeper lithium below layer oxidized by thermal molecules

6

Lithium rapidly migrates from where it is applied under plasma fluxes

- NRA for Li and D performed on tiles as removed from vessel at end of 2009
- Measures Li:C atomic ratio to depth ~15µm: data always < 1 why?
- Most within ~2 μ m of surface: little evidence for sequestration within graphite

- Lithium remaining on inner divertor: peak ~0.6, average 0.2 mg·cm⁻²
- Total deposition estimated at ~6 mg·cm⁻² (280g over 1.2m diameter)
- Most of residual Li probably deposited while emptying LITER at end of run
- ⇒MOST deposited lithium removed from OSP region on each 1s shot

MGB / LRTSG / 20120213

In 2010, we had high hopes for the LLD but ...

- This was another major engineering effort and involved collaborators
 - Thanks to R. Nygren and SNL team, S. O'Dell and PPI, Kugel, Ellis, Kaita, Viola, Schneider, engineering and NSTX machine techs
- We encountered many problems with the heaters
 - One plate failed in Feb before the run started, two others in Aug
 - Tried air heating but only reached ~200°C and developed leak at end
- Filling the LLD required evaporating large amounts of lithium
 - Only ~7% of evaporated lithium ended up on the LLD
 - 15g before the first plasma, 22 days with >10g applied
- It was very difficult to separate the effects of the LLD from those of the lithium background
 - With all that lithium deposited, its effects were more persistent
 - Most operation with the LLD was similar to that with Li on C
- Plasma on liquid lithium effects were only observed with OSP on LLD
 - Heating by plasma itself raised surface above lithium melting point
- Argon vents to repair LITER shutters may have contaminated the lithium

What have we learned of importance to NSTX-U?

- Unless lithium can control the density, it has limited use in NSTX-U
 - The gain in confinement is welcome but the impurity price is high (with carbon)
- Evaporation will not be able to apply enough lithium to last 5s
 - It required a lot of lithium to service a 1.5s pulse: the lithium is mobile
- Too little of the lithium introduced by evaporation is effective
- The shutters are a weak link in the present application scheme
- Large quantities of lithium in the vessel are a real liability
 - Any vacuum problem escalates into a major setback
 - Despite a big effort, the LLD fell short of expectations on performance
- A flowing lithium system in the vessel would require a huge effort
 - There are difficulties in wetting and distributing lithium over surfaces
 - How can spent lithium be removed from plasma contact?
 - The lithium bearing surfaces would probably have to be removable

• Do you want NSTX-U to study ST physics or lithium technology?

What should be the role of lithium in NSTX-U? – my current view

- Molybdenum on the divertor might help alleviate carbon influx
 - It is (personally) disappointing we were unable to investigate this
 - There will still be a lot of carbon around in NSTX-U however and
 - High-Z impurities were also a problem when ELMs were suppressed
- Targeted flash evaporation of lithium would be more effective
 - Leverage LTX development in this area
 - Investigate masking lithium stream at evaporator
 - Be vigilant about vacuum conditions during evaporation
- Don't attempt to use a flowing lithium system (at least initially)
 - This would dominate and potentially derail the NSTX-U program
- Use continuous resupply of lithium to SOL near divertor
 - It puts the lithium where it's effective
 - Less off-target application and collateral damage
 - **Granule injector:** *disappointing that trial was thwarted* \rightarrow EAST
 - Directed powder accelerator: needs collaborator development