

International Sherwood Conference March 31-April 3, 2012Atlanta, GA

Unveiling the kinetic mechanism for RMP penetration in diverted edge geometry

C.S. Chang^a and G.Y. Park^b

^aPrinceton Plasma Physics Laboratory ^bPresent address: National Fusion Research Institute, Korea

> Experimental Collaborators T. Evans (GA) and R. Moyer (UCSD)

SciDAC Proto-FSP Center for Plasma Edge Simulation

Outline

- Introduction
- Many-dimensional RMP puzzle
- The guiding center kinetic code XGC0
- Understanding the RMP penetration into DIII-D plasma
 - $_{\odot}~$ At low $\nu_{e^{*},\text{DIIID}}$ ~ $\nu_{e^{*},\text{ITER}},$ but $n_{e,\text{DIII-D}}$ << $n_{e,\text{ITER}}$
 - $~\circ~$ At $n_{e,\text{DIII-D}} \thicksim n_{e,\text{ITER}},$ but high $\nu_{e^*,\text{DIIID}} >> \nu_{e^*,\text{ITER}}$
 - Electrical current responses in plasma
- Implication to ITER
 - $~\circ~~\nu_{e^{\star},\text{DIIID}}$ ~ $\nu_{e^{\star},\text{ITER}}$ and $n_{e,\text{DIII-D}}$ ~ $n_{e,\text{ITER}}$ in ITER similar shape DIII-D
 - Rotation effect
- Conclusion and discussion

We will discuss the DIII-D plasmas only

 DIII-D with n=3 coil array has demonstrated well-diagnosed, repeatable ELM suppression by RMPs

Other experimental results

- Mitigation at high v_{e^*} and high n_e in ASDEX-U with n=2 coil array
- Mitigation in JET with N=1, 2 and
- Mitigation in MAST with n=3
- Mitigation in TEXTOR with m/n=6/2
- ELM triggering in NSTX with n=3
- ELM suppression by n=1 coil array has recently been claimed in KSTAR, but is not well diagnosed.

Steep edge pedestal and the RMP coils in DIII-D

Resonant Magnetic Perturbations (RMPs) for suppression of Edge Localized Modes in tokamak plasma

Idea: stochastic magnetic perturbation can ease the steep pressure gradient.

126006 3500 ms

 $\delta_{upper} = 0.36$

Many-dimensional puzzle in DIII-D results: Should be answered simultaneously from first principles

- At low v_{e^*} and n_e , DIII-D has ELM-suppressed pedestals. But,
 - Why does **n**_e get pumped out? (cf. n_e follows n_i)
 - Why does the T_e profile not collapse (cf. Rechester-Rosenbluth)?
 - Why does the T_e barrier remain at the outer part of the original pedestal?
 - How does the E_r-well survive the RMPs?
 - Why is there the q₉₅ windows for ELM suppression?
 - Why is the "vacuum Chirikov>1" only a necessary condition?
- At high v_{e^*} (and high n_e) why is the ELM suppression more difficult?

1.0

1.1

ELM suppression window in q₉₅

RMP penetration is a multiscale self-organization process. Kinetic trapped-passing physics is a critical part.

XGC0: Kinetic transport modeling code

- A simplified, nonturbulent, $<\Phi>$ -solver version of XGC1 full-f gyrokinetic turbulence code
- Full-f PIC, allowing for small 3D δB
- Realistic diverted geometry from EFIT eqdsk
- 5D ion and electron Lagrangian drift-kinetic dynamics

(particle/momentum/energy conserving)

- Monte-Carlo neutral atoms (ionization, charge exchange, wall recycling)
- Electromagnetic field solvers: $\Phi(\psi_0)$ and $\delta\psi(\delta J_T)$
- Extended logical sheath at wall
- Heat and torque inputs from core
- Particle-momentum-energy conserving Coulomb collisions
- Modeling of anomalous transport: radial random walk and convection, with independent control of the ambipolar particle and the heat transport
- Grad-Shafranov magnetic equilibrium evolution as pedestal evolves

Limitations/assumptions in the present study

- Transient wave/instability dynamics in RMP penetration is not included.
- n=3 toroidal component only in toroidal Ampere's law solver
- Analyze the edge region only, 0.8 < ψ_N
- Assume that turbulence effect is negligible
 - Prescribe anomalous transport fluxes to fit the pre-RMP profiles
- Weak stochastic magnetic field ($\delta B/B_0 < 10^{-3}$)
 - → Assume $\Phi(\psi_0)$, $n(\psi_0)$, $T(\psi_0)$ (Rosenbluth-Rechester approach)
 - \rightarrow Assume cantori, coinciding with the unperturbed flux surfaces ψ_0

- Thus, neglect δExB convective cell effect from imbedded islands in stochastic sea
- RMP study in XGC1 will improve most of these assumptions

Outline

- Introduction
- RMP puzzle
- The guiding center kinetic code XGC0
- Understanding the RMP penetration into DIII-D plasma
 - \circ At low $v_{e^*,\text{DIIID}} \sim v_{e^*,\text{ITER}}$, but $n_{e,\text{DIII-D}} < n_{e,\text{ITER}}$
 - $~\circ~$ At $n_{e,\text{DIII-D}} \thicksim n_{e,\text{ITER}},$ but high $\nu_{e^*,\text{DIIID}} >> \nu_{e^*,\text{ITER}}$
 - Current responses in plasma
- Implication to ITER: What does XGC0 says?
 - $\circ~\nu_{e^*,\text{DIIID}}$ ~ $\nu_{e^*,\text{ITER}}$ and $n_{e,\text{DIII-D}}$ ~ $n_{e,\text{ITER}}$ in ITER similar shape DIII-D
 - Rotation effect
- Conclusion and discussion

RMP simulation for weakly collisional, low density DIII-D pedestal

- Modelling DIII-D 126006 RMP shot, n=3
 - ITER-shaped, ITER-like low collisionality (~0.1) H-mode
- 6 MW of heat and 4 N-m of torque at inner boundary (ψ_N =0.8)
- Ad-hoc anomalous transport is included to fit the pre-RMP plasma profile, and is assumed unchanged by RMPs (D≈χ_e≈χ_i ≈χ_φ≈0.1 m²/s)

-The RMP driven transport is found to be much greater than the ad-hoc anomalous transport

- Neutral recycling coeff =0.9
- No impurity particles
- Vacuum RMP boundary condition at ψ_N =1.06

Simulation reproduces all the qualitative features of **experiment** (inside the ELM suppression window, q_{95} =3.58)

DIII-D Experiment 126006 at ~100 ms after RMPs

Simulation, at 4ms after the RMP turn-on: still evolving.

Impurity

radiation

1.05

brings the

T_{e SOI} down

12

Resonant components, thus stochasticity, are suppressed just inside the magnetic separatrix \rightarrow survival of transport barrier

Toroidal flow profile also shows quantitative agreement

Experimental observation (126006)

Edge V_T increases in the co-current directiion, with the survival of the "dip."

Poloidal angle

Experimental indication of field line connection from pedestal to divertor in ELM suppression window

J. Watkins, et al., J. Nucl. Mater., 363-365 (2007) 708

Inside the q_{95} window, p_e pedestal is somewhat milder and the T_e top moves out radially

Enough to distinguish ELM stable from unstable?

Vacuum Chirikov is similar, but the plasma responded Chirikov is a sensitive function of q₉₅ around 3.6. Near q₉₅ =3.6, Chirikov ≥1 everywhere. Otherwise, Chirikov <1 exists in the pedestal.

→ "Vacuum Chirikov>1 is only a necessary condition."

Ion particle flux is mostly from perpendicular neoclassical transport in plasma-consistent RMPs, from E_r≠ E_r(axisymmetric). Electrons follow ion transport along the perturbed B.

In plasma-consistent RMPs

Parallel electron heat conduction is not dominant over the convective loss: contrary to Rechester-Rosenbluth (small passing fraction, collisions, perpendular drift, E_r)

Plasma-consistent RMP case

Electron heat fluxes

XGC0 finds large $|V_{e^{\perp}} = V_{e^*} + V_{ExB}|$ in the barrier-survival region, and zero/small $V_{e^{\perp}}$ in the enhanced transport region

- Pre-RMP based prediction does not hold ground [Cf., Fitzpatrick's flow shielding theory]
- Large $|V_{e\perp}|$ just inside the separatrix is the result of robust X-transport.

Outline

- Introduction
- RMP puzzle
- The guiding center kinetic code XGC0
- Understanding the RMP penetration into DIII-D plasma
 - $_{\odot}$ At low $\nu_{e^{*},\text{DIIID}}$ ~ $\nu_{e^{*},\text{ITER}},$ but $n_{e,\text{DIII-D}}$ << $n_{e,\text{ITER}}$
 - At n_{e,DIII-D} ~ n_{e,ITER}, but high v_{e*,DIIID} >> v_{e*,ITER}
 Current responses in plasma
- Implication to ITER: What does XGC0 says?
 - $\circ~\nu_{e^*,\text{DIIID}}$ ~ $\nu_{e^*,\text{ITER}}$ and $n_{e,\text{DIII-D}}$ ~ $n_{e,\text{ITER}}$ in ITER similar shape DIII-D
 - Rotation effect
- Conclusion and discussion

Effect of collisionality

Experiment: As the collisionality increases, RMP-driven transport weakens and the ELM suppression becomes difficult.

Simulation: As the collisionality increases, RMP penetration, thus RMPdriven transport weakens.

Fourier current amplitudes in the stochastic region shows double peak, with the secondary current pushed inward while the primary current is pulled outward.

Low collisionality

- Strong shielding currents at m≥13 suppresses local RMPs and stochasticity as soon as the RMPs meet the pedestal.
- Secondary currents tend to cancel the primary shielding currents at m≤12, leading to the recovery of RMPs and stochasticity at inner radii.

High collisionality

- Primary shielding currents are weak and does not generate strong secondary currents.
- Primary shielding currents simply accumulate toward inner radii and shields RMPs and stochasticity.
- Some secondary shielding currents develop at deeper insde

Reactive secondary currents to the primary screening currents can cancel the plasma suppression effect, or even amplify RMPs.

Secondary current to block the primary plasma response **B**_{r,plasma}

Outline

- Introduction
- RMP puzzle
- The guiding center kinetic code XGC0
- Understanding the RMP penetration into DIII-D plasma
 - $~\circ~$ At low $\nu_{e^*,\text{DIIID}}$ ~ $\nu_{e^*,\text{ITER}}\text{,}$ but $n_{e,\text{DIII-D}}$ << $n_{e,\text{ITER}}$
 - $\circ~$ At $n_{e,\text{DIII-D}} \thicksim n_{e,\text{ITER}},$ but high $\nu_{e^*,\text{DIIID}} >> \nu_{e^*,\text{ITER}}$
 - Current responses in plasma
- Implication to ITER: What does XGC0 say?
 - $\circ~\nu_{e^*,\text{DIIID}} \thicksim \nu_{e^*,\text{ITER}}$ and $n_{e,\text{DIII-D}} \thicksim n_{e,\text{ITER}}$ in ITER-similar-shape DIII-D
 - Rotation effect
- Conclusion and discussion

At ITER-relevant collisionality and density in DIII-D: If collisionality is kept low, 2X density increase does not change the stochasticity much

- It was the high $\nu_{e^{\star}}$, suppressing RMPs in the pedestal, not the high n_e RMP penetration into core becomes more difficult
- \rightarrow Good news for ITER

Chirikov profiles

Rotation effect on stochasticity

Effect of lower rotation on islands/stochasticity penetration to edge pedestal top is minimal \rightarrow Could be a good news for ITER

- However, low rotation does not suppress islands/stochasticity at the core side
- 50% higher rotation significantly suppresses the RMPs in the core (not at pedestal top, though), without degrading the pedestal performance.
 → Rotation will be good in ITER: same story.

Conclusion and discussion

- We have a kinetic tool to understand and predict RMP penetration!
- Plasma-responded Chirikov ≥1 in the whole edge region is a common factor in the ELM suppressed cases (scan in q₉₅ and collisionality)
- At higher v_{e^*} plasma screens RMPs from most of the edge region
- Secondary current response is important
- Implication to ITER
 - Higher density does not destroy the pedestal stochasticity, but helps RMP suppression in core → good news
 - •Lower toroidal rotation is goof for pedestal stochasticity. However, core density pumping and NTM may get worse →stronger rotation is better
 - Higher toroidal rotation does not destroy the pedestal stochasticity, but helps RMP suppression in core
- RMP study will move to full-f gyrokinetic XGC1 for consistency with turbulence and ExB convective-cell effects.

XGC1 in divertor geometry

$$d\mathbf{x}/dt = (1/D)[q\hat{v}_{\parallel}\mathbf{B}/m + (q\hat{v}_{\parallel}^2)\nabla \times \mathbf{B} + \mathbf{B} \times \nabla H/B^2]$$
$$d\hat{v}_{\parallel}/dt = -(1/B^2D)[\nabla \cdot \mathbf{B} + \hat{v}_{\parallel}\nabla H \cdot \nabla \times \mathbf{B}]$$

Where H is the Hamiltonian with flux-function electrostatic potential Φ_0 $H = (q/2m)\hat{v}_{\parallel}^2 \mathbf{B}^2 + \mu B/q + \Phi_0$, $\hat{v}_{\parallel} = m v_{\parallel}/qB$, $D = 1 + \hat{v}_{\parallel} \mathbf{B} \cdot \nabla \times \mathbf{B}/B^2$,

Momentum and energy conserving particle motion.

[LittleJohn, White, and others]

I-coils in DIII-D

[T. Evans, et al, IAEA-FEC 2008]

RMP penetration is a multiscale self-organization process → Full-function kinetic code

- RMP penetration is sensitive to δj_{\parallel} : electron dynamics
- Electron dynamics in stochastic δB is kinetic (trapped+passing in E_r)
 - Not only δj_{\parallel} , but also parallel particle and heat transport
- Ion transport in 3D $\delta \textbf{B}$ is kinetic
 - Friction between trapped and passing particles in $E_r \neq E_{r0}$ (axisymmetric)
- X-transport (X-point effect) and its effect on E_r is full-f kinetic
- Plasma profile and E_r must be evolved together with RMP penetration \rightarrow full-f kinetic
- Neutral particles, heating and torque play significant roles in plasma profile evolution
- → Full-f kinetic simulation in realistic separatrix geometry with neutral recycling, heat source and torque

Conclusion and discussion

- We have a kinetic tool to understand and predict RMP penetration!
- Chirikov ≥1 in the whole edge region is a common factor in the ELM suppressed cases (scan in q₉₅ and collisionality)
- Implication to ITER
 - Higher density does not appear to be deleterious to pedestal stochasticity, but helps RMP suppression in core \rightarrow good news
 - Lower rotation does not appear to be deleterious to pedestal stochasticity. However, core density pumping and NTM may get worse →stronger rotation is better
- RMP study will move to full-f gyrokinetic XGC1 for consistency with turbulence and ExB convective-cell effects.

XGC1 simulation of ITG + neoclassical physics in diverted DIII-D plasma

Verification of kinetic electron dynamics in XGC1 in δ f mode. Full-f also verified.