

Supported by

Impact of the X-point Radius and Divertor Recycling on the L-H Transition Dynamics and P_{LH} on NSTX

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Devon J. Battaglia

C.S. Chang, S.M. Kaye, S. Ku, R. Maingi, and the NSTX Research Team

NSTX Experimental Science Meeting April 24, 2012

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFR KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

Outline and Motivation

- Properties of X-point and divertor are "hidden variables" of P_{LH}
 - ITER and beyond: predict and control conditions for L-H and H-L
 - NSTX: Investigate P_{LH} vs R_X over large range of recycling/fueling
 - Enabled by unique open divertor and lithium pumping scheme
- P_{LH} increases with larger triangularity (δ), and neutral density
 - $\rm T_e$ and $\rm n_e$ profiles at L-H transition are similar despite a large range in heating and neutral fueling
 - Large increase in divertor currents observed prior to transition
- Results are interpreted using XGC0
 - Self-consistent pedestal-SOL kinetic model
 - Preliminary understanding: single-ion orbit loss hole and ion-neutral physics influence $E_r \times B$ flow shear available for turbulence suppression

NSTX provides unique capability to examine impact of divertor recycling and X-point conditions

- Ubiquitous tokamak observation:
 - Change P_{LH} via R_X, Z_X, divertor leg length, divertor pumping, wall conditioning, shot number...
- Goal: Quantify P_{LH} and edge profiles over a large range of triangularity and divertor pumping
 - Match R_{IN}, R_{OUT}
 - Nearly match X-point height, surface area, B_{T0}, B_{OUT}, density
 - Reproduce shapes under different pumping & fueling conditions
 - Require LH > 50 ms after NBI step

First results reported in: R. Maingi, et. al. *Nucl. Fusion* **50** (2010)

200 – 300 kW shot-to-shot variation in NBI power to get L-H when (P_{OH} – dW/dt) is slowly varying and free of MHD

🔘 NSTX

Impact of the R_x and Divertor Recycling on the L-H Transition on NSTX, D.J. Battaglia (4/24/2012)

P_{LH} varies with the neutral fueling/pumping scenario and R_{χ}

🕕 NSTX

Impact of the R_x and Divertor Recycling on the L-H Transition on NSTX, D.J. Battaglia (4/24/2012)

P_{LH} scales strongly with the inferred divertor recycling

- P_{LH} trends higher with line-integrated density
 - Qualitatively agrees with ITPA scaling
 - Yet, P_{loss} varies over a factor 3 at $n_{el} \sim 3 \times 10^{15} \text{ m}^{-2}$
- P_{LH} increases with pre-NBI divertor D_{α} signal
 - May be proportional to initial edge neutral density (n_N)
 - Impacts NBI efficiency and ion-neutral collisional losses

Electron profiles at L-H are similar despite large range in heating power and neutral fueling

- n_e from last 2 or 3 L-mode profiles
 - n_e normalize to n_{e,ped}
 - All profiles roughly fit tanh profile with
 ~ 1 cm width
- T_e plotted with R axis normalized to tanh symmetry point (~ 1.47 m)
 - Only last L-mode profile before L-H plotted at right
 - High-δ has ~ 10% larger T_e at top of density pedestal
- Central T_e follows NBI heating
 - But $T_{e,ped}$ are very similar for all cases

Ion measurements difficult in L-mode edge of NSTX

- Poor L-mode Carbon confinement, marginal NBI, and lithium coated windows conspire against CHERs
- Could infer $T_i \sim T_e$ in L-mode edge
 - Thermal equilibration time < electron thermal confinement
 - Limited edge T_i data lines up fairly well with T_e L-mode profile

L-H transition on NSTX "always" preceded by an increase in the divertor D_{α} and CHI gap current

- NSTX: D_{α} increases prior to L-H
 - Favorable: biggest change in inboard div
 - Unfavorable: biggest change in outboard div
- NSTX: Divertor current prior to L-H
 Direction of current follows grad-B direction
- L-mode: Divertor current saturates & decays, D_{α} continues upward trajectory
- Dithers and L-H: D_{α} and divertor current quickly drop in ~ 1 ms

Summary of experimental observations

- P_{LH} varies 20 40% over range of triangularity
 - Edge T ~ 10% difference over range of R_X
 - Remaining energy probably goes to ion-neutral collisions
- P_{LH} increases with inferred neutral density
 - Consistent with ion-neutral collisions consuming energy
- T_e, n_e at L-H pretty similar despite large range in heating power (NBI: 0.3 – 2.6 MW) & neutral fueling (D_α: 0.15 – 0.25)
 - Large divertor pumping leads to broad T_e profile (i.e., low peaking)
 - Ion edge temperature and rotation are not well constrained
- Before L-H transition ...
 - Dithering phase is longest at lowest P_{heat} (or smallest neutral density)
 - Very few dithers observed at largest neutral fueling cases
 - Always see increase in D_{α} and divertor current
 - Changes character with grad-B direction

Connecting experimental results to theory and simulation

- What do these results say about the L-H trigger?
 - Pick a theory ... Diamond ... FM³ ... Burrell ...
 - Most propose non-linear mechanisms for suppressing turbulence
 - Most theories say (more or less) that the transition will be more likely as the E × B flow shear increases
 - \dots and that the mechanisms are not direct functions of grad-B, R_X, n_N
 - ... the mean equilibrium profiles are a function of these things
- Goal: use a self-consistent simulation of edge to examine dependence of E_r × B flow shear, edge gradients, separatrix parameters, etc. versus grad-B, R_X, n_N...
 - How well could these computed scalings explain the observed P_{LH} scaling with "hidden variables?"
 - XGC0: full-f of pedestal and SOL; ion, electron & neutrals; real 2D or 3D edge geometry; sheath physics

X-transport: suppression of non-ambipolar transport of ions on neoclassical orbits contributes to the edge E_r

- X-point amplifies grad-B drift
 - X-point: low B_{θ} , slows poloidal transit
 - Non-ambipolar: ion drift >> electron drift
- Lowest energy loss orbits:
 - Start at outboard midplane
 - Bounce at inboard midplane
 - Lost to inner divertor leg in favorable grad-B
- Negative E_r acts to confine ions
 - Constraint on E_r: must be negative enough to nearly suppress non-ambipolar ion loss

C.S. Chang, S. Ku, H. Weitzner, Phys. Plasmas, 9 (2002)

Critical energy for ion loss increases as R_x decreases

Preliminary XGC0 results indicate the ion-orbit loss hole does impact E_r close to the separatrix

- Self-consistent E_r calculation with D⁺, e⁻ and D⁰
 - Start with L-mode T_e (= T_i) and n_e , 99% recycle rate, no impurities
 - Core heat and particle source to maintain profiles
 - About 5 10% larger core heat needed for low-δ shape
 - No anomalous transport (kinetic neqglassical)

XGC0 is providing insight into the mechanisms that lead to P_{IH} varying with R_x on NSTX

Impact of the R_x and Divertor Recycling on the L-H Transition on NSTX, D.J. Battaglia (4/24/2012)

Some other preliminary observations with XGC0 that correlate with experimental results

- Reduced recycling deepens E_r well
 - Neutral density has biggest impact on T_i via CX losses
 - Smaller impact on T_e
 - Fueling changes height of density pedestal, but not the width much
 - L-mode n_e pedestal width is primarily set by anomalous transport rate
- Code can probe dynamic solutions approaching L-H

- Turbulence measurements in this data set
 - Any signatures during dithers or just prior to L-H?
 - What would L-H trigger theories predict for this dataset?
- Working with CPES team to resolve curiosities in first runs with XGC0
 - Goal is to quantitatively compare to experiment using synthetic diagnostics built around XGC0 calculations
- Impact of grad-B drift direction, magnetic balance of X-points
 - These have large impacts on P_{LH} (factors of 2 or 3)
 - Potentially the highest impact connection between model and experiment
- Supporting DIII-D boundary group with XGC0 runs

Summary

- P_{LH} increases 20 40% as triangularity increases
 - About half of this power goes into achieving the larger $T_e \& T_i$ needed for comparable $E_r \times B$ shear
 - Due to single-ion orbit loss hole near separatrix
 - Other half lost to ion-neutral collisions
 - Presumably due to changes in the divertor connection lengths, flux expansion ...
- P_{LH} varied over a factor of 2 via lithium coatings
 - Consistent with P_{LH} increasing with the inferred divertor recycling
 - On-going XGC0 work will explore ion-neutral dynamics
- I'll be back ... hopefully with ...
 - Impact on P_{LH} from grad-B drift, dynamic solutions approaching L-H, scaling with different threshold conditions, turbulence characteristics around dithers and L-H

Prior to LH, increase in inboard divertor D_{α} and a finite current across divertor gap

- As $P_{loss} \rightarrow P_{LH} \dots$
 - Significant increase in inboard div D_{α}
 - Broad D_{α} through private flux region (ions grad-B drift)
 - Current across CHI insulating gap toward outer divertor
 - Suggests increase in ion current to inboard divertor
- Observed in NBI heated and ohmic-only discharges

X-point geometry enhances ion-orbit loss, primary loss is to the inner divertor plate

- Low B_p above X-point enhances grad-B drift toward divertor
- Collisionless orbits lost through X-point

C.S. Chang, S. Ku, H. Weitzner, PoP **9**, 3884 (2002)

 Lowest energy ion on loss orbit bounces at inboard midplane, lost to inner divertor

Ion-orbit loss is sensitive to the X-point geometry

- Move large $R_X (\delta_{low} \sim 0)$ to small $R_X (high \delta_{low}) \dots$
 - Shorten inboard loss orbits \rightarrow increase critical T_i for loss
 - Lengthen outboard loss orbits \rightarrow decrease critical T_i for loss
 - More trapped ions will bounce inboard of X-point

High- δ shape has a larger critical T_i and smaller loss cone for type-I orbit loss

- Move large $R_X (\delta_{low} \sim 0)$ to small $R_X (high \delta_{low}) \dots$
 - Shorten inboard loss orbits \rightarrow increase critical T_i for loss
 - Lengthen outboard loss orbits \rightarrow decrease critical T_i for loss
 - More trapped ions will bounce inboard of X-point

High-δ shape reduces the number of collisionless loss orbits for a given T_i profile compared to low-δ

- Size of loss cone in Maxwellian ion distribution increases with thermal T_i
 - Majority of loss orbits are to inner divertor
 - Loss rate depends on rate ions are scattered into hole
 - E_r , flows reduce loss rate, but maintain dependence on R_X

• High- δ shape requires ~ 1.6 higher T_i than low- δ to match the size of the loss cone in the Maxwellian distribution

Slowly varying profiles provide good constraint to L-mode electron profiles right before L-H transition

🔘 NSTX

Impact of the R_x and Divertor Recycling on the L-H Transition on NSTX, D.J. Battaglia (4/24/2012)

Ion velocity loss hole has a critical energy near ion thermal energy in edge region when E_r = 0

- Single particle guiding-center orbit tracing with E_r = 0, no collisions
 - White: Confined orbits
 - T: Trapped, P: Passing
 - Gray: Unconfined orbit
 - I: Strike inner div
 - O: Strike outer div
- K_{crit} within Maxwellian T_i in edge
 - X-transport important only in edge pedestal region
 - Negative E_r pushes K_{crit} curve to higher energies

Guiding-center orbit tracing code: S. Ku, H. Baek, C. S. Chang, *Phys. Plasmas* **11** (2004)

-0.6 -0.7 Pitch -0.8 -0.9 -1 100 200 300 400 500 0 Single ion energy (eV) Critical ion energy for loss: $K_{crit} = 71 eV$ 500 K_{crit} w/ $E_r = 0$

 $\Psi_{\rm N} = 0.96$ (~1 cm from separatrix) at midplane

Analytical model for ion orbit loss with E_r = 0 illustrates impact of plasma parameters on K_{crit}

- K_{crit} : Critical energy for collisionless ion loss with $E_r = 0$
 - B, B_X, B_B: Magnetic field at launch point, bounce point & X-point
 - $-\Delta \psi = \psi_X \psi_{\text{launch}}, \Delta r = R_{\text{out}} R_{\text{launch}}$ on midplane

 K_{crit} increases with larger I_p and smaller plasma circumference (C_p)

Acknowledgements

This work was funded by the US Department of Energy under Contract Numbers DE-AC02-09CH11466 and DE-AC05-00OR22725.

Reprints

