Overview + Preliminary results from EAST experiments studying relative particle pumping of lithium and cryo-pumping

Jon Menard M. Jaworski, D. Mueller, E. Kolemen, K. Tritz

NSTX-U Physics Meeting June 25, 2012

2 EAST experiments proposed by J. Menard, M. Jaworski

- JM: "Particle control comparison between lithium & cryo-pumping"
 - Goal: characterize the separate contributions of Li wall conditioning and cryos
 - Assess the persistence of deuterium pumping from lithium
- MJ: "Evaporated lithium coating lifetimes on EAST Tokamak"
 - Goal: study the evolution of divertor conditions during long-pulse experiments on EAST
 - Langmuir Probes, filter-scopes to monitor local conditions over time, correlate with performance
- Our experiments above were combined, and shot-plan further combined with another experiment studying H and L-mode access (and pumping) vs. strike-point position by Qingsheng Hu (ASIPP) and Zhenfing Ding (Dalian University of Technology)
- Got ~80 shots over 2 days
 - Day 1 was from ~12PM to 1AM, Day 2 from ~12PM to ~5PM

Methods of Lithium Coatings

From G. Z. Zuo – "Lithium Coating for H-Mode and High Performance Plasmas on EAST in ASIPP" – PSI2012

EAST

Development of Inserted Li Ovens for Increasingly Uniform (Top and Bottom) Coverage on EAST

Three generation of ovens were developed, each upgraded step-by-step.
 Using third generation ovens, Li deposition can be controlled on required areas.
 Multiple ovens and deeper radial insertion have allowed better coatings and better plasmas.

Second generation

Run Year	Oven location(s)	Position in VV R (m)	Oven Capacity (g)
2009	Bay D	~2.7	~3g
2010 Spring	Bays M+D	~2.7	~15
2010 Autumn	Bays M+F (or J)	~2.7/2.3	~15
2012	Bays M+J+D	~2.3/1.9/1.9	~15

First generation

EAST

First Results of Li Coating in 2012

With 3 deeply inserted ovens, 45g/Li coating:

- Lithium coating are more uniform than in 2010
- Lower recycling and remarkable low $H/(H+D) \sim 2.5\%$ were obtained
- H mode plasmas were easily achieved, and **10s long H mode** has been obtained.

From G. Z. Zuo – "Lithium Coating for H-Mode and High Performance Plasmas on EAST in ASIPP" – PSI2012

EAST

SMBI results from HL2-A show high fueling efficiency even with large distance between injector and plasma

Fig.9 Fueling efficiency of SMBI from LFS in limiter and divertor discharges. Shots from 9925 to 9934 (square) are limiter discharges with, $I_{\rm p} = 170$ kA, $B_{\rm t} = 1.3 \sim 1.4$ T and $n_{\rm e} = 0.7 \sim 1.3 \times 10^{19}$ m⁻³. Shots 10476 and 10477 (circle) are divertor discharges with, $I_{\rm p} = 165$ kA, $B_{\rm t} = 1.3$ T and $n_{\rm e} = 1.3 \times 10^{19}$ m⁻³

6

SMBI density control recently developed for EAST (still need to get details on EAST system...)

Reference plasma shape for long-pulse H-mode (30s) and this experiment

Day 1 - Initial comparison of Li vs. cryo-pumping

- 400kA, 2T, 1MW LH (+ some ICRF), mostly L-mode
- Used SMBI for density feedback control
 - Turn-off SMBI notch for global particle pump-out calculation
- Scans (Li + cryos on):
 - DRSEP
 - LSN delta-Z
 - Measured degradation of Li pumping
 - Used LH + ICRF to access H-mode (no H-mode for dZ = -4cm)
- Scans (No Li, no cryos RF He GDC + regen to 40K cryos)
 - DRSEP scan
 - dZ scan (-4 to +4cm)
- Still would like to have Li + cryos off (T=40K) case

Results of early DRSEP scan with fresh Lithium

- USN and DND have strongest pump-out as evidenced by higher integrated SMBI gas required to maintain density
- LSN has less pumping
 - Counter-intuitive given cryopumping is on bottom of machine
 - Possible role of drifts?
 - Or up/down asymmetries in Li?
 - Have asked for reversed B_T
 - Due to small remaining run-time this year, likely won't get...

Degradation of strong Li pumping observed

- Compare shots with same magnetic balance but similar increment in shot number
- Observe 30-50% reduction in pumping after 6-8 shots
- Each shot ~10s → 60-80 shot seconds of strong Li pumping

USN vs. LSN, scan of LSN strike-point

- Pump-out is quite sensitive to exact location of strike-point
- After upper lithium pumping has degraded, USN and LSN reference are similar
 - -2cm shift = weakest pumping
 - Li and D accumulation in private flux region?
 - -4cm strongest
 - Reason unclear possible role of proximity to cryo? (see later part of talk)

ICRF initially acts as modest particle source, but is conditioned after 3-4 shots

LH+ICRF H-mode with nominal LSN strike-point

- Pumping insufficient for very low density H-mode
 - Density increases ~50% above requested control value
- Could not obtain H-mode with -4cm shift
- Did not spend much time to increase coupling + power
- Remaining shots done only in L-mode

Long-term Li pumping reduction trend vs shot

• Pumping decreased factor of 2 after 20-25 shots

- 200-250 shot seconds

- Suggests significant passivation of fresh Li
- Li pumping largely saturated (see next slides)

Reference LSN pumping - weakly dependent on cryo

- Pumping of passivated Li + cryo similar to pumping from ICRF He-glow and warmed (40K) cryo
- Pump-out during SMBI notch stronger after ICRF He-glow conditioning
 - Possible that ICRF He-glow detraps D?
 - Some re-activation of Li?

Pumping with -2cm shift with fresh Li + cryo weaker than -4cm with passivated Li and warm cryo – why?

Pumping sensitive to strike-point location

- After Li passivation, and cryos partially warmed, pumping independent of strike-point position except for -4cm
- Still unclear why -4cm has better pumping

Day 2 - role of Li vs. cryo-pumping

- 400kA, 2T, 1MW LH no ICRF, stay in L-mode
- This time with fresh lithium, no cryo-pumping (T=40K)
- SMBI not available for density feedback control
- Spent ~10 shots optimizing waveform for low-field-side gas fueling including increased integral gains for density feedback control, improved DRSEP transition
- Achieved good control of gas and electron density:
 square-wave and impulse (turn-off) pumping response
- Li trends = similar results as previous day:
 - USN and DND have more rapid pump-out than LSN
 - Observed reduction in Li pumping by 8-10 shots
 - Stationary pumping conditions by ~20 shots

Day 2 – optimization of cryo-pumping

- Performed X-point height scan with cryo cold (8K)
 Tried shifts relative to reference LSN: -2, -4, -6, -8, -10cm
- Only -8cm case exhibited increased particle pumping

Cryo-pumping sensitive to strike-pt position

- Case with increased density pump-out places strikepoint directly at divertor
 corner (plenum entrance)
- Other nearby shapes do not show significant pumping
- Implies precise strike-point control likely needed for particle control with cryo

Clear dependence on cryo temperature

• As expected, pump only effective below 20K (D₂ freezing)

Summary conclusions from experiment

- Pumping from Li dominates reference LSN, since reference LSN has little/no cryo-pumping
- Li pumping degraded by 30-50% after ~6-8 10s shots
- Li pumping conditions saturated at factor of 2-3 lower pumping (relative to fresh Li) after ~20 10s shots
- Results may be different for different plasma conditions!
- Cryo-pumping appears to only be effective with strikepoint directly at corner of divertor = plenum entrance
- If very long-pulse H-modes saturate Li, will need very good strike-point control for cryo-pumping for D control
- Achieved H-mode for reference LSN, but not for -4cm shift, and did not try -8cm → future work (not for me!)