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TAEs and avalanches 

•  Toroidal Alfvén eigenmodes (TAEs) are weakly damped 
Alfvén waves in a toroidal plasma, often driven by ions 
whose velocity approaches the Alfvén velocity (or a fraction  
thereof) 

•  A TAE is characterized by a toroidal mode number, n, and 
may occur steadily or intermittently 

•  A burst in which several TAEs of differing n occur is termed 
an avalanche 

•  Avalanches produce drops in the neutron rate and losses 
of beam ions are sometimes observed concurrent with an 
avalanche 
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Typical avalanche in NSTX shows multiple n on Mirnovs 
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•  TAEs appear 
as burst 

•  Beam ion 
redistribution 
stabilizes 
modes for a 
time 
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Avalanches can cause drop in neutron rate and sometimes 
burst of loss 

•  But, loss is not 
observed with 
every avalanche 

•  Pitch angle 
distributions of loss 
during avalanches 
sometimes differ 
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Any avalanche induced beam ion loss is measured with 
scintillator probe 

5 

Beam ion 
orbit


Scintillator probe: 

Combination of aperture 
geometry & B acts as magnetic 
spectrometer 
Fast video camera captures 
luminosity pattern on scintillator 
as function of time 
Γloss(ρ, χ, t)


NSTX probe: 
5 cm ≤ ρ ≤60 cm 
15° ≤ χ ≤ 80° 
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Avalanche induced loss often occurs over a wide range of 
pitch angles 

•  Interpreted as 
beam ion phase 
space being 
stochastized by 
multiple modes 
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Goal: compare measured and modeled lost ion pitch angle 
distributions  

•  Measured distribution recorded by scintillator probe 
•  Loss distribution modeled by guiding center orbit code that 

incorporates:  
–  Measured TAE n numbers, frequencies (Mirnov coils) 
–  Radial mode structures and amplitudes (multichannel 

microwave reflectometer data coupled to NOVA-K calculations 
of eigenmodes) 

–  Deposited beam ion distribution function from TRANSP 
–  Focus on recently deposited beam ions since losses appear at 

or very close to injection energy of 90 keV 
•  Prior work by Fredrickson, et al., has successfully used this 

approach to model drops in the neutron rate 
•  Present work has more ambitious goal as loss flux should 

match at all pitch angles (not just matching scalar quantity) 
7 
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Compare cases with and without losses to draw inferences 
about conditions when fast ions may be lost 
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Example avalanche with no observed losses 

•  n=2–5 concurrently present in 
3 rapid bursts 

•  Neutron rate drops by 17%, 
yet no lost beam ions seen by 
detector 

•  Could there be loss, but not to 
detector position? 
–  Possible, but see below 

•  Internal redistribution only? 
–  Might occur if modes are more 

core-localized with small edge 
amplitudes, but ρNB large in 
NSTX 

–  Orbit simulations suggest 
redistribution does occur 
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Avalanche with loss also has multiple n, and loss evolves 
rapidly during event 

•  blah 
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• Scintillator image 
sequence during 
avalanche


• This avalanche also 
produces 17% drop in 
neutron rate 

• Loss occurs over 
interval of only 100 µs, 
corresponding to a few 
tens of toroidal transits 
of beam ions

• Passing and trapped 
ions lost simultaneously, 
over range of pitch 
angles
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E||B NPA flux at 90 keV confirms loss/no loss behavior 

•  Sharp drop in energetic neutral 
flux seen concurrent with large 
beam ion loss 

•  No drop in NPA signal in no-
loss case  

•  Confirms loss probe 
measurements are 
representative of fast ion 
changes inside plasma 
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60° pitch angle loss appears first, then range of lower pitch 
angles 

•  Rapid appearance of wide pitch angle spot (18°–40°) in    
33 µs (≤10 toroidal transits) indicates transport of fast ions 
is very strong during avalanche 
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Beam ion orbits can be completely characterized by 3 
constants of the motion 

•  E = ½ mv2 (kinetic energy) 
–  Conserved on time scales short compared to collisional slowing down 

time; also roughly conserved in avalanche losses as these ions lost at 
injection energy 

•  µ = ½ mvperp
2/B (magnetic moment) 

–  Conserved in the absence of fields varying near the particle’s cyclotron 
frequency or field gradients shorter than length ρi 

•  Pφ =mvφR+qψpol (canonical angular momentum) (a.k.a. Pζ) 
–  Conserved in axisymmetry (i.e. in absence of nonaxisymmetric MHD or 

error field correction coil fields) 

•  Conservation conditions usually satisfied in NSTX 
•  Knowledge of these 3 parameters fully determines orbit 

(except toroidal position, φ, and gyromotion, which are not 
used in this work) 

•  This approach equivalent to guiding center orbit following 
13 
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Deposited full energy beam distribution can be represented 
in (µ, Pφ) space, along with certain phase space boundaries 

•  blah 
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Phase space model also helps understand MHD loss 

•  Observed MHD frequencies <<Ωci, so µ will be conserved 
•  Mode destroys toroidal symmetry, so Pφ no longer constant 
•  A single n mode moves particles along a line nE-ωPφ=const 

in diffusive fashion, at fixed µ 
•  Multiple n in avalanche can cause broader transport 
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NOVA-K TAE radial eigenfunctions can be fit  to reflectometer 
fluctuation profiles of principal modes 

•  Density 
fluctuation 
or displace-
ment can be 
matched, 
giving 
absolute 
amplitudes 
of various n 
modes for 
input into 
orbit 
following 
code 
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Mode structures and amplitudes can be used to determine 
regions of phase space subject to stochasticity 

•  Use guiding center code ORBIT to follow nearby pairs of ions 
for multiple toroidal transits, then create Poincaré plots 

•  If “phase vector” between particles in action/angle space 
rotates by more than π, then that region of phase space is 
stochastic 

•  Repeat process for many particle pairs, spanning phase space, 
and shade volumes of phase space in plot to designate 
stochastic domains 
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Test whether code-modeled stochastic domain presence 
coincides with lost pitch angle ranges 

•  Stochastic maps shown on following slides for 4 pitch angles 
marked (4 µ values) 
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Case a (23°) is near center of a detected loss spot & model 
predicts loss 

•  Beam ions 
deposited in 
stochastic region 

•  Particles move 
along orange line 
(or parallel lines) 
under influence of 
n=2 mode 

•  Particles clearly 
deposited in 
stochastic region 
and that region 
extends to loss 
boundary 
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Case b (33°) is near boundary of no-loss region & model 
shows deposition only on good surfaces 

•  Deposition in a region 
of good surfaces in 
phase space means 
beam ions have no 
chance to be 
transported to loss 
boundary, even though 
stochasticity exists at 
other locations 

•  Experiment still shows 
loss at this pitch angle, 
but loss tapers away at 
slightly higher pitch 
angle 
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Case c (43°) is in region of no loss; deposition evident only in 
region with good surfaces 

•  Model consistent 
with observation at 
this pitch angle 

•  Slopes of lines of 
diffusion for n=3 & 4 
also shown–they do 
not differ markedly 
from direction of 
transport for n=2 
mode 
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Case d (52°) is near loss spot; deposition squarely in 
stochastic region again 

•  Note that deposition 
is in stochastic 
region and that 
stochasticity exists 
along entire line of 
transport up to loss 
boundary 

•  Both conditions 
required for loss 

•  Experiment shows 
loss starting at 
slightly higher pitch 
angle, so slight 
inconsistency here 
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Orbit following including mode structure shows bimodal loss 
distribution in pitch angle, as observed 

•  Modeled loss 
boundaries agree with 
measurement at top 
and bottom of range, 
but not at intermediate 
values 

•  Same simulation for 
no loss case shows 
very few particles 
reach detector 

•  Note also that detector 
loss is representative of 
all losses 
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Modeled loss flux vs pitch angle differs from experiment 

•  Model, while predicting 2 
peaks at detector, does 
not reproduce observed 
variation of loss flux with 
pitch angle 
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Various refinements to model inputs have not improved 
agreement with measurement 

•  Re-fit eigenfunctions to measured ne profile, rather than 
TRANSP in-out symmetrized profile 

•  Added electric potential due to plasma rotation 
•  Increased number of particles 
•  Varied frequency and amplitudes of modes in time to match 

evolution during avalanche 
•  Enhanced mode amplitudes by factor of 3 above observed 

values 
•  Ran simulations several times longer than actual avalanche 

duration 
•  None of these gave better agreement with pitch angle range 

of losses 
•  Suggests eigenfunctions are inaccurate in some way 
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Summary 

•  TAE avalanches in similar NSTX plasmas sometimes produce 
observable fast ion loss at wall and sometimes do not 

•  To pursue differences between loss seen vs unseen, 
measured TAE amplitudes and structures were put into ORBIT 
code to compute stochastic orbit domains 

•  Loss appears at a given pitch angle only if: 
–  Beam deposited in stochastic region 
–  Stochasticity extends all the way to the loss boundary along the line of 

transport, with no intervening good surfaces 

•  Loss distribution at detector in ORBIT model shows 2 groups 
of lost particles, in agreement with measurement 

•  Beyond this qualitative agreement, there are some differences 
between model and experiment 

•  Fitted eigenfunctions may not represent real ones accurately 
26 
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Future work 

•  Try newly-developed method of transferring eigenfunctions 
to ORBIT—avoids potential for singularities in evaluation of 
modes and their derivatives 

•  Investigate effect of beam ion transport and loss on beam 
driven current 

•  Extend analysis methods to the frequent EPM bursts that 
occur during Ip ramp up phase 


